Catastrophic cascade of failures in interdependent networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04-15

AUTHORS

Sergey V. Buldyrev, Roni Parshani, Gerald Paul, H. Eugene Stanley, Shlomo Havlin

ABSTRACT

Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks. More... »

PAGES

1025

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08932

DOI

http://dx.doi.org/10.1038/nature08932

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010370510

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20393559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA", 
            "Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buldyrev", 
        "givenName": "Sergey V.", 
        "id": "sg:person.0650670702.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650670702.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bar-Ilan University", 
          "id": "https://www.grid.ac/institutes/grid.22098.31", 
          "name": [
            "Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parshani", 
        "givenName": "Roni", 
        "id": "sg:person.01353333356.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353333356.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "Gerald", 
        "id": "sg:person.0746711601.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746711601.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanley", 
        "givenName": "H. Eugene", 
        "id": "sg:person.0767651144.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bar-Ilan University", 
          "id": "https://www.grid.ac/institutes/grid.22098.31", 
          "name": [
            "Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Havlin", 
        "givenName": "Shlomo", 
        "id": "sg:person.0671611704.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671611704.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/84/48004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006897951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.138701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007135761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.138701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007135761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730110112519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020106812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.065102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022169024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.065102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022169024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024469091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024469091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900087", 
          "https://doi.org/10.1038/nature03248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900087", 
          "https://doi.org/10.1038/nature03248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.278701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041724189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.278701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041724189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75101-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045660211", 
          "https://doi.org/10.1007/978-3-540-75101-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75101-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045660211", 
          "https://doi.org/10.1007/978-3-540-75101-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.969131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijcis.2008.016092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067443669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmic.2008.018186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067473703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400841356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095864011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511610905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511791383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-15", 
    "datePublishedReg": "2010-04-15", 
    "description": "Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08932", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7291", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Catastrophic cascade of failures in interdependent networks", 
    "pagination": "1025", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3167cf61f3099246feb8c79b3b2b6dae26127450f28f599c02e8ad551799915b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20393559"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08932"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010370510"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08932", 
      "https://app.dimensions.ai/details/publication/pub.1010370510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08932"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08932'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08932'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08932'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08932'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      50 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08932 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5cc539f88f374bd0835950e705ed6e9b
4 schema:citation sg:pub.10.1007/978-3-540-75101-4_5
5 sg:pub.10.1038/30918
6 sg:pub.10.1038/nature03248
7 https://doi.org/10.1016/j.physrep.2005.10.009
8 https://doi.org/10.1017/cbo9780511610905
9 https://doi.org/10.1017/cbo9780511791383
10 https://doi.org/10.1080/00018730110112519
11 https://doi.org/10.1103/physreve.64.026118
12 https://doi.org/10.1103/physreve.66.016128
13 https://doi.org/10.1103/physreve.66.065102
14 https://doi.org/10.1103/physreve.80.036105
15 https://doi.org/10.1103/physrevlett.85.4626
16 https://doi.org/10.1103/physrevlett.85.5468
17 https://doi.org/10.1103/physrevlett.87.278701
18 https://doi.org/10.1103/physrevlett.96.138701
19 https://doi.org/10.1103/revmodphys.74.47
20 https://doi.org/10.1109/37.969131
21 https://doi.org/10.1126/science.286.5439.509
22 https://doi.org/10.1209/0295-5075/84/48004
23 https://doi.org/10.1504/ijcis.2008.016092
24 https://doi.org/10.1504/ijmic.2008.018186
25 https://doi.org/10.1515/9781400841356
26 schema:datePublished 2010-04-15
27 schema:datePublishedReg 2010-04-15
28 schema:description Complex networks have been studied intensively for a decade, but research still focuses on the limited case of a single, non-interacting network. Modern systems are coupled together and therefore should be modelled as interdependent networks. A fundamental property of interdependent networks is that failure of nodes in one network may lead to failure of dependent nodes in other networks. This may happen recursively and can lead to a cascade of failures. In fact, a failure of a very small fraction of nodes in one network may lead to the complete fragmentation of a system of several interdependent networks. A dramatic real-world example of a cascade of failures ('concurrent malfunction') is the electrical blackout that affected much of Italy on 28 September 2003: the shutdown of power stations directly led to the failure of nodes in the Internet communication network, which in turn caused further breakdown of power stations. Here we develop a framework for understanding the robustness of interacting networks subject to such cascading failures. We present exact analytical solutions for the critical fraction of nodes that, on removal, will lead to a failure cascade and to a complete fragmentation of two interdependent networks. Surprisingly, a broader degree distribution increases the vulnerability of interdependent networks to random failure, which is opposite to how a single network behaves. Our findings highlight the need to consider interdependent network properties in designing robust networks.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N58a8436d8f404a179f5b90efd6cffe14
33 N6500792731374f1da6ae51442e1f546e
34 sg:journal.1018957
35 schema:name Catastrophic cascade of failures in interdependent networks
36 schema:pagination 1025
37 schema:productId N143e43b9baa24cf5aad7e9087f28981c
38 N14a957e224e0423b9be639a7fa0859cd
39 N1e5124038e074f50ab6df86e2a06c612
40 N32d3bd155bff48599656398e5750e7e7
41 N5f43be0cb984475e8e5b8780314818d7
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370510
43 https://doi.org/10.1038/nature08932
44 schema:sdDatePublished 2019-04-11T10:20
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Na34a59fbd6c343dd9c69e970f136d520
47 schema:url https://www.nature.com/articles/nature08932
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N05b48b430f924e07b72a1583af1930e2 rdf:first sg:person.01353333356.28
52 rdf:rest N549873e480d74113a40d33c2dc27c45c
53 N143e43b9baa24cf5aad7e9087f28981c schema:name pubmed_id
54 schema:value 20393559
55 rdf:type schema:PropertyValue
56 N14a957e224e0423b9be639a7fa0859cd schema:name nlm_unique_id
57 schema:value 0410462
58 rdf:type schema:PropertyValue
59 N1e5124038e074f50ab6df86e2a06c612 schema:name dimensions_id
60 schema:value pub.1010370510
61 rdf:type schema:PropertyValue
62 N32d3bd155bff48599656398e5750e7e7 schema:name readcube_id
63 schema:value 3167cf61f3099246feb8c79b3b2b6dae26127450f28f599c02e8ad551799915b
64 rdf:type schema:PropertyValue
65 N4e61bf05d40344959900cce687de6c45 rdf:first sg:person.0671611704.01
66 rdf:rest rdf:nil
67 N549873e480d74113a40d33c2dc27c45c rdf:first sg:person.0746711601.03
68 rdf:rest N6cd2a1bcb1944c619e93a59e0b49252e
69 N58a8436d8f404a179f5b90efd6cffe14 schema:issueNumber 7291
70 rdf:type schema:PublicationIssue
71 N5cc539f88f374bd0835950e705ed6e9b rdf:first sg:person.0650670702.18
72 rdf:rest N05b48b430f924e07b72a1583af1930e2
73 N5f43be0cb984475e8e5b8780314818d7 schema:name doi
74 schema:value 10.1038/nature08932
75 rdf:type schema:PropertyValue
76 N6500792731374f1da6ae51442e1f546e schema:volumeNumber 464
77 rdf:type schema:PublicationVolume
78 N6cd2a1bcb1944c619e93a59e0b49252e rdf:first sg:person.0767651144.84
79 rdf:rest N4e61bf05d40344959900cce687de6c45
80 Na34a59fbd6c343dd9c69e970f136d520 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information Systems
87 rdf:type schema:DefinedTerm
88 sg:journal.1018957 schema:issn 0090-0028
89 1476-4687
90 schema:name Nature
91 rdf:type schema:Periodical
92 sg:person.01353333356.28 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
93 schema:familyName Parshani
94 schema:givenName Roni
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353333356.28
96 rdf:type schema:Person
97 sg:person.0650670702.18 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
98 schema:familyName Buldyrev
99 schema:givenName Sergey V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650670702.18
101 rdf:type schema:Person
102 sg:person.0671611704.01 schema:affiliation https://www.grid.ac/institutes/grid.22098.31
103 schema:familyName Havlin
104 schema:givenName Shlomo
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671611704.01
106 rdf:type schema:Person
107 sg:person.0746711601.03 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
108 schema:familyName Paul
109 schema:givenName Gerald
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746711601.03
111 rdf:type schema:Person
112 sg:person.0767651144.84 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
113 schema:familyName Stanley
114 schema:givenName H. Eugene
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767651144.84
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-540-75101-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045660211
118 https://doi.org/10.1007/978-3-540-75101-4_5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
121 https://doi.org/10.1038/30918
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature03248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900087
124 https://doi.org/10.1038/nature03248
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9780511610905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666412
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/cbo9780511791383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667199
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreve.64.026118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106812
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreve.66.016128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023034919
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physreve.66.065102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022169024
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.80.036105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024469091
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.85.4626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810049
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.87.278701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041724189
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.96.138701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007135761
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/37.969131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163501
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1209/0295-5075/84/48004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006897951
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1504/ijcis.2008.016092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067443669
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1504/ijmic.2008.018186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067473703
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1515/9781400841356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095864011
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
165 schema:name Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
166 Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.22098.31 schema:alternateName Bar-Ilan University
169 schema:name Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...