Shell-isolated nanoparticle-enhanced Raman spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03-18

AUTHORS

Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong Lin Wang, Zhong Qun Tian

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants. More... »

PAGES

392

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08907

DOI

http://dx.doi.org/10.1038/nature08907

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013655144

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20237566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aluminum Oxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Citrus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fruit", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pesticide Residues", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platinum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Silicon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jian Feng", 
        "id": "sg:person.01275206720.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206720.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yi Fan", 
        "id": "sg:person.01311434577.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311434577.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yong", 
        "id": "sg:person.0777447511.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhi Lin", 
        "id": "sg:person.0666031220.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031220.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Song Bo", 
        "id": "sg:person.0727520463.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727520463.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiao Shun", 
        "id": "sg:person.01274044256.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274044256.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China", 
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Feng Ru", 
        "id": "sg:person.01177413142.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177413142.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wei", 
        "id": "sg:person.0661657753.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661657753.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhi You", 
        "id": "sg:person.01231021561.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231021561.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Yin Wu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Bin", 
        "id": "sg:person.01063162363.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063162363.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhong Lin", 
        "id": "sg:person.0735175411.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735175411.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Zhong Qun", 
        "id": "sg:person.01146476124.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146476124.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.297.5586.1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005232241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007245986", 
          "https://doi.org/10.1038/nmat2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082119", 
          "https://doi.org/10.1038/nnano.2008.189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025598i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025598i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7002804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013556553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7002804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013556553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b707872m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015198344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9601871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019388273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9601871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019388273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la026706j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029846239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la026706j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029846239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b616986d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031277989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b616986d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031277989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5303.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032000189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033512552", 
          "https://doi.org/10.1038/nbt.1501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035474832", 
          "https://doi.org/10.1038/nbt1377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biophys.26.1.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039830881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.physchem.54.011002.103833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040892702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b708841h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042866356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408319102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048259134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)01451-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049321123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901389p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901389p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar800041s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar800041s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017406b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055818778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017406b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055818778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051618f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051618f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.120877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2891086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057879695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.096101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.096101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370206776593762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065256954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370206776593762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065256954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-18", 
    "datePublishedReg": "2010-03-18", 
    "description": "Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08907", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4968881", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3077265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3046844", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7287", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Shell-isolated nanoparticle-enhanced Raman spectroscopy", 
    "pagination": "392", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "410c960526c7bdc94093b19d3237ed1113a3d1fbc470eb88a4cb1fa67241c3f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20237566"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08907"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013655144"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08907", 
      "https://app.dimensions.ai/details/publication/pub.1013655144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08907"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08907'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      69 URIs      32 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08907 schema:about N00fc8f51319443ad9e8363f9ba3ba0e3
2 N0134515117b44049bfc1c6276adb3fd3
3 N08f270f82a11498d9b06bea51e35767e
4 N0ed36d6762564fc19d68258a000083a1
5 N3779cbfacfdf418880f9dbc19e3fd80b
6 N41004a24d28a410798de5526470caaf4
7 N4f0e4a3dcec3400099bf08cdbe70d8e3
8 N6ef71b6a86dd4b09aa40c5616a0dc043
9 N7dd5e95c1faf4941af17da7c67399224
10 N81d9e7bb6db84bb4bd3af59ac0cab088
11 Nc6139c7f538343f897b81a49b6873ccb
12 Nfb40ffe3e93548c49fa470c56cb96ba2
13 anzsrc-for:03
14 anzsrc-for:0306
15 schema:author N332e3e2699884a34b67f5c2024634755
16 schema:citation sg:pub.10.1038/nbt.1501
17 sg:pub.10.1038/nbt1377
18 sg:pub.10.1038/nmat2162
19 sg:pub.10.1038/nnano.2008.189
20 sg:pub.10.1038/physci241020a0
21 https://doi.org/10.1016/s0009-2614(99)01451-7
22 https://doi.org/10.1021/ac901389p
23 https://doi.org/10.1021/ar7002804
24 https://doi.org/10.1021/ar800041s
25 https://doi.org/10.1021/ja017406b
26 https://doi.org/10.1021/la026706j
27 https://doi.org/10.1021/la9601871
28 https://doi.org/10.1021/nl025598i
29 https://doi.org/10.1021/nl0515753
30 https://doi.org/10.1021/nl051618f
31 https://doi.org/10.1039/b616986d
32 https://doi.org/10.1039/b707872m
33 https://doi.org/10.1039/b708841h
34 https://doi.org/10.1063/1.120877
35 https://doi.org/10.1063/1.2891086
36 https://doi.org/10.1073/pnas.0408319102
37 https://doi.org/10.1103/physrevlett.78.1667
38 https://doi.org/10.1103/physrevlett.92.096101
39 https://doi.org/10.1103/revmodphys.57.783
40 https://doi.org/10.1126/science.275.5303.1102
41 https://doi.org/10.1126/science.297.5586.1536
42 https://doi.org/10.1146/annurev.biophys.26.1.567
43 https://doi.org/10.1146/annurev.physchem.54.011002.103833
44 https://doi.org/10.1366/000370206776593762
45 schema:datePublished 2010-03-18
46 schema:datePublishedReg 2010-03-18
47 schema:description Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf Nca82702d1ff64c71930d38ccfed93539
52 Nf8861882727a4ff08cf392c0cb692ade
53 sg:journal.1018957
54 schema:name Shell-isolated nanoparticle-enhanced Raman spectroscopy
55 schema:pagination 392
56 schema:productId N02a28defd5e242869ea16e423966d4e1
57 N2640a946fe414eaa845b061ef48a5357
58 N45930207755348f5bfe2971149cca9a7
59 N519f159d3da44e8ea4b8e9ffddc125d0
60 N6a713d38299640599b9cf7776e35a7c0
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013655144
62 https://doi.org/10.1038/nature08907
63 schema:sdDatePublished 2019-04-11T10:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nf367a1f0b82345b6a0551fe06c803bff
66 schema:url https://www.nature.com/articles/nature08907
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N00fc8f51319443ad9e8363f9ba3ba0e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Aluminum Oxide
72 rdf:type schema:DefinedTerm
73 N0134515117b44049bfc1c6276adb3fd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gold
75 rdf:type schema:DefinedTerm
76 N02a28defd5e242869ea16e423966d4e1 schema:name pubmed_id
77 schema:value 20237566
78 rdf:type schema:PropertyValue
79 N08f270f82a11498d9b06bea51e35767e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Platinum
81 rdf:type schema:DefinedTerm
82 N0ed36d6762564fc19d68258a000083a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Citrus
84 rdf:type schema:DefinedTerm
85 N1566696ee9534180bc8e7988cab73c57 rdf:first sg:person.01231021561.55
86 rdf:rest N39af79c95a9a4856827d54c3c03e683d
87 N2640a946fe414eaa845b061ef48a5357 schema:name readcube_id
88 schema:value 410c960526c7bdc94093b19d3237ed1113a3d1fbc470eb88a4cb1fa67241c3f7
89 rdf:type schema:PropertyValue
90 N2a30ae364412427db7ffe4a63e7d9311 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
91 schema:familyName De Yin Wu
92 rdf:type schema:Person
93 N332e3e2699884a34b67f5c2024634755 rdf:first sg:person.01275206720.10
94 rdf:rest Nbd8945fb04b14b5ba4ca2277ab6e967c
95 N3779cbfacfdf418880f9dbc19e3fd80b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Adsorption
97 rdf:type schema:DefinedTerm
98 N39af79c95a9a4856827d54c3c03e683d rdf:first N2a30ae364412427db7ffe4a63e7d9311
99 rdf:rest N5790f8a1063b4c829db9068ff8857c23
100 N41004a24d28a410798de5526470caaf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Pesticide Residues
102 rdf:type schema:DefinedTerm
103 N45930207755348f5bfe2971149cca9a7 schema:name dimensions_id
104 schema:value pub.1013655144
105 rdf:type schema:PropertyValue
106 N4f0e4a3dcec3400099bf08cdbe70d8e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Fruit
108 rdf:type schema:DefinedTerm
109 N519f159d3da44e8ea4b8e9ffddc125d0 schema:name doi
110 schema:value 10.1038/nature08907
111 rdf:type schema:PropertyValue
112 N5790f8a1063b4c829db9068ff8857c23 rdf:first sg:person.01063162363.57
113 rdf:rest Ne881e6a72a1747efaeed4f20eb63c127
114 N6a713d38299640599b9cf7776e35a7c0 schema:name nlm_unique_id
115 schema:value 0410462
116 rdf:type schema:PropertyValue
117 N6ef71b6a86dd4b09aa40c5616a0dc043 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Metal Nanoparticles
119 rdf:type schema:DefinedTerm
120 N7dd5e95c1faf4941af17da7c67399224 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Spectrum Analysis, Raman
122 rdf:type schema:DefinedTerm
123 N81d9e7bb6db84bb4bd3af59ac0cab088 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Hydrogen
125 rdf:type schema:DefinedTerm
126 Nab3ff63c055449f1b930d00561f66953 rdf:first sg:person.01177413142.10
127 rdf:rest Nc0ce2b8118c14e569f021c62a017a07f
128 Nbd8945fb04b14b5ba4ca2277ab6e967c rdf:first sg:person.01311434577.20
129 rdf:rest Nf073b9e83a0a41768b504c20d8cae886
130 Nc0ce2b8118c14e569f021c62a017a07f rdf:first sg:person.0661657753.81
131 rdf:rest N1566696ee9534180bc8e7988cab73c57
132 Nc6139c7f538343f897b81a49b6873ccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Yeasts
134 rdf:type schema:DefinedTerm
135 Nca82702d1ff64c71930d38ccfed93539 schema:issueNumber 7287
136 rdf:type schema:PublicationIssue
137 Ncbce3f1210b3478f88285514182b0c55 rdf:first sg:person.0666031220.40
138 rdf:rest Nf28cc14397734615b65146acbc81d358
139 Ne881e6a72a1747efaeed4f20eb63c127 rdf:first sg:person.0735175411.53
140 rdf:rest Neb2be9b3d89447ea900614d22774e8ba
141 Neb2be9b3d89447ea900614d22774e8ba rdf:first sg:person.01146476124.67
142 rdf:rest rdf:nil
143 Nf073b9e83a0a41768b504c20d8cae886 rdf:first sg:person.0777447511.55
144 rdf:rest Ncbce3f1210b3478f88285514182b0c55
145 Nf28cc14397734615b65146acbc81d358 rdf:first sg:person.0727520463.27
146 rdf:rest Nff7c027ca196412c9804a42ea89cedad
147 Nf367a1f0b82345b6a0551fe06c803bff schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nf8861882727a4ff08cf392c0cb692ade schema:volumeNumber 464
150 rdf:type schema:PublicationVolume
151 Nfb40ffe3e93548c49fa470c56cb96ba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Silicon Dioxide
153 rdf:type schema:DefinedTerm
154 Nff7c027ca196412c9804a42ea89cedad rdf:first sg:person.01274044256.94
155 rdf:rest Nab3ff63c055449f1b930d00561f66953
156 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
157 schema:name Chemical Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Chemistry (incl. Structural)
161 rdf:type schema:DefinedTerm
162 sg:grant.3046844 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
163 rdf:type schema:MonetaryGrant
164 sg:grant.3077265 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
165 rdf:type schema:MonetaryGrant
166 sg:grant.4968881 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
167 rdf:type schema:MonetaryGrant
168 sg:journal.1018957 schema:issn 0090-0028
169 1476-4687
170 schema:name Nature
171 rdf:type schema:Periodical
172 sg:person.01063162363.57 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
173 schema:familyName Ren
174 schema:givenName Bin
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063162363.57
176 rdf:type schema:Person
177 sg:person.01146476124.67 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
178 schema:familyName Tian
179 schema:givenName Zhong Qun
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146476124.67
181 rdf:type schema:Person
182 sg:person.01177413142.10 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
183 schema:familyName Fan
184 schema:givenName Feng Ru
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177413142.10
186 rdf:type schema:Person
187 sg:person.01231021561.55 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
188 schema:familyName Zhou
189 schema:givenName Zhi You
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231021561.55
191 rdf:type schema:Person
192 sg:person.01274044256.94 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
193 schema:familyName Zhou
194 schema:givenName Xiao Shun
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274044256.94
196 rdf:type schema:Person
197 sg:person.01275206720.10 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
198 schema:familyName Li
199 schema:givenName Jian Feng
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206720.10
201 rdf:type schema:Person
202 sg:person.01311434577.20 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
203 schema:familyName Huang
204 schema:givenName Yi Fan
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311434577.20
206 rdf:type schema:Person
207 sg:person.0661657753.81 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
208 schema:familyName Zhang
209 schema:givenName Wei
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661657753.81
211 rdf:type schema:Person
212 sg:person.0666031220.40 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
213 schema:familyName Yang
214 schema:givenName Zhi Lin
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031220.40
216 rdf:type schema:Person
217 sg:person.0727520463.27 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
218 schema:familyName Li
219 schema:givenName Song Bo
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727520463.27
221 rdf:type schema:Person
222 sg:person.0735175411.53 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
223 schema:familyName Wang
224 schema:givenName Zhong Lin
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735175411.53
226 rdf:type schema:Person
227 sg:person.0777447511.55 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
228 schema:familyName Ding
229 schema:givenName Yong
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55
231 rdf:type schema:Person
232 sg:pub.10.1038/nbt.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033512552
233 https://doi.org/10.1038/nbt.1501
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nbt1377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035474832
236 https://doi.org/10.1038/nbt1377
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nmat2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245986
239 https://doi.org/10.1038/nmat2162
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nnano.2008.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010082119
242 https://doi.org/10.1038/nnano.2008.189
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/physci241020a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006984282
245 https://doi.org/10.1038/physci241020a0
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0009-2614(99)01451-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321123
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/ac901389p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071527
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ar7002804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013556553
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/ar800041s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151765
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/ja017406b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055818778
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/la026706j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029846239
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/la9601871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019388273
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/nl025598i schema:sameAs https://app.dimensions.ai/details/publication/pub.1010182143
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1021/nl0515753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424100
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1021/nl051618f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216426
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1039/b616986d schema:sameAs https://app.dimensions.ai/details/publication/pub.1031277989
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1039/b707872m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015198344
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1039/b708841h schema:sameAs https://app.dimensions.ai/details/publication/pub.1042866356
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1063/1.120877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685052
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1063/1.2891086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057879695
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1073/pnas.0408319102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048259134
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1103/physrevlett.78.1667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814800
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1103/physrevlett.92.096101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828007
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1103/revmodphys.57.783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839078
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.275.5303.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032000189
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.297.5586.1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005232241
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1146/annurev.biophys.26.1.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039830881
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1146/annurev.physchem.54.011002.103833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040892702
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1366/000370206776593762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065256954
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
296 schema:name State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
299 schema:name School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245, USA
300 State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...