Shell-isolated nanoparticle-enhanced Raman spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03-18

AUTHORS

Jian Feng Li, Yi Fan Huang, Yong Ding, Zhi Lin Yang, Song Bo Li, Xiao Shun Zhou, Feng Ru Fan, Wei Zhang, Zhi You Zhou, De Yin Wu, Bin Ren, Zhong Lin Wang, Zhong Qun Tian

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants. More... »

PAGES

392

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08907

DOI

http://dx.doi.org/10.1038/nature08907

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013655144

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20237566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adsorption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aluminum Oxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Citrus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fruit", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pesticide Residues", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Platinum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Silicon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Yeasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jian Feng", 
        "id": "sg:person.01275206720.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206720.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Yi Fan", 
        "id": "sg:person.01311434577.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311434577.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Yong", 
        "id": "sg:person.0777447511.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhi Lin", 
        "id": "sg:person.0666031220.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031220.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Song Bo", 
        "id": "sg:person.0727520463.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727520463.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiao Shun", 
        "id": "sg:person.01274044256.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274044256.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China", 
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Feng Ru", 
        "id": "sg:person.01177413142.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177413142.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wei", 
        "id": "sg:person.0661657753.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661657753.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhi You", 
        "id": "sg:person.01231021561.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231021561.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Yin Wu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Bin", 
        "id": "sg:person.01063162363.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063162363.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332\u20130245, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhong Lin", 
        "id": "sg:person.0735175411.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735175411.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiamen University", 
          "id": "https://www.grid.ac/institutes/grid.12955.3a", 
          "name": [
            "State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Zhong Qun", 
        "id": "sg:person.01146476124.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146476124.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.297.5586.1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005232241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci241020a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006984282", 
          "https://doi.org/10.1038/physci241020a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007245986", 
          "https://doi.org/10.1038/nmat2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082119", 
          "https://doi.org/10.1038/nnano.2008.189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025598i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025598i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010182143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7002804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013556553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar7002804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013556553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b707872m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015198344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9601871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019388273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la9601871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019388273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la026706j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029846239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la026706j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029846239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b616986d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031277989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b616986d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031277989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5303.1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032000189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033512552", 
          "https://doi.org/10.1038/nbt.1501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035474832", 
          "https://doi.org/10.1038/nbt1377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.biophys.26.1.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039830881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.physchem.54.011002.103833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040892702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b708841h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042866356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408319102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048259134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)01451-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049321123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901389p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac901389p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar800041s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar800041s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017406b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055818778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017406b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055818778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051618f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051618f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.120877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2891086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057879695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.096101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.096101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370206776593762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065256954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370206776593762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065256954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-18", 
    "datePublishedReg": "2010-03-18", 
    "description": "Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08907", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4968881", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3077265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3046844", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7287", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Shell-isolated nanoparticle-enhanced Raman spectroscopy", 
    "pagination": "392", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "410c960526c7bdc94093b19d3237ed1113a3d1fbc470eb88a4cb1fa67241c3f7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20237566"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08907"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013655144"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08907", 
      "https://app.dimensions.ai/details/publication/pub.1013655144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08907"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08907'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08907'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      69 URIs      32 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08907 schema:about N159aa7daedd0442494eace44b70b913c
2 N2115338ad20a447f80f213c515754a16
3 N2ee6b6426cf342f4a4419dad7254842b
4 N4c076408906c48b28df78cde980a98cf
5 N5fd54efe4f4e4871a1cc32dc60188889
6 N8101213189d94da99bcdc90b0ca37eb2
7 Na2621b3cdd46442bb44a9b1cb9c6f116
8 Nc103ebfdb7fe4f75a77c6d459d40a867
9 Nc2fa80ce627e4e70985f0858a72dc663
10 Ndeb442198fb54382830bea4b41c614dd
11 Ne0d22b9e1e664050bd0a77e654a9c6ad
12 Nf1ab82d2600f495da2e367edbfda5a02
13 anzsrc-for:03
14 anzsrc-for:0306
15 schema:author N94e15f6113d2462d8b722fa8098bc427
16 schema:citation sg:pub.10.1038/nbt.1501
17 sg:pub.10.1038/nbt1377
18 sg:pub.10.1038/nmat2162
19 sg:pub.10.1038/nnano.2008.189
20 sg:pub.10.1038/physci241020a0
21 https://doi.org/10.1016/s0009-2614(99)01451-7
22 https://doi.org/10.1021/ac901389p
23 https://doi.org/10.1021/ar7002804
24 https://doi.org/10.1021/ar800041s
25 https://doi.org/10.1021/ja017406b
26 https://doi.org/10.1021/la026706j
27 https://doi.org/10.1021/la9601871
28 https://doi.org/10.1021/nl025598i
29 https://doi.org/10.1021/nl0515753
30 https://doi.org/10.1021/nl051618f
31 https://doi.org/10.1039/b616986d
32 https://doi.org/10.1039/b707872m
33 https://doi.org/10.1039/b708841h
34 https://doi.org/10.1063/1.120877
35 https://doi.org/10.1063/1.2891086
36 https://doi.org/10.1073/pnas.0408319102
37 https://doi.org/10.1103/physrevlett.78.1667
38 https://doi.org/10.1103/physrevlett.92.096101
39 https://doi.org/10.1103/revmodphys.57.783
40 https://doi.org/10.1126/science.275.5303.1102
41 https://doi.org/10.1126/science.297.5586.1536
42 https://doi.org/10.1146/annurev.biophys.26.1.567
43 https://doi.org/10.1146/annurev.physchem.54.011002.103833
44 https://doi.org/10.1366/000370206776593762
45 schema:datePublished 2010-03-18
46 schema:datePublishedReg 2010-03-18
47 schema:description Surface-enhanced Raman scattering (SERS) is a powerful spectroscopy technique that can provide non-destructive and ultra-sensitive characterization down to single molecular level, comparable to single-molecule fluorescence spectroscopy. However, generally substrates based on metals such as Ag, Au and Cu, either with roughened surfaces or in the form of nanoparticles, are required to realise a substantial SERS effect, and this has severely limited the breadth of practical applications of SERS. A number of approaches have extended the technique to non-traditional substrates, most notably tip-enhanced Raman spectroscopy (TERS) where the probed substance (molecule or material surface) can be on a generic substrate and where a nanoscale gold tip above the substrate acts as the Raman signal amplifier. The drawback is that the total Raman scattering signal from the tip area is rather weak, thus limiting TERS studies to molecules with large Raman cross-sections. Here, we report an approach, which we name shell-isolated nanoparticle-enhanced Raman spectroscopy, in which the Raman signal amplification is provided by gold nanoparticles with an ultrathin silica or alumina shell. A monolayer of such nanoparticles is spread as 'smart dust' over the surface that is to be probed. The ultrathin coating keeps the nanoparticles from agglomerating, separates them from direct contact with the probed material and allows the nanoparticles to conform to different contours of substrates. High-quality Raman spectra were obtained on various molecules adsorbed at Pt and Au single-crystal surfaces and from Si surfaces with hydrogen monolayers. These measurements and our studies on yeast cells and citrus fruits with pesticide residues illustrate that our method significantly expands the flexibility of SERS for useful applications in the materials and life sciences, as well as for the inspection of food safety, drugs, explosives and environment pollutants.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N0cc963fecaf9457faafcd0af498c2b5a
52 N30d27c4cd0ea4eb89aa840a30d8e7252
53 sg:journal.1018957
54 schema:name Shell-isolated nanoparticle-enhanced Raman spectroscopy
55 schema:pagination 392
56 schema:productId N64fe3f8ababe47ac8c324a680fe7ef95
57 N69fa561a78414d7bb9362251c9fefcec
58 N7f9b60b541374bc092db623a2f4dbc80
59 N8ee73f6882f343f7af492ead4f42e3aa
60 Nb930200b0549455f95189de8ee93ee29
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013655144
62 https://doi.org/10.1038/nature08907
63 schema:sdDatePublished 2019-04-11T10:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N23a663e8cb9542f6b117a67beaa63e57
66 schema:url https://www.nature.com/articles/nature08907
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0804403554e04252926b9131503d240e schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
71 schema:familyName De Yin Wu
72 rdf:type schema:Person
73 N0b6da3aea6cc4052b847bb79e713e6f7 rdf:first N0804403554e04252926b9131503d240e
74 rdf:rest N15ec0aa6b6f44603808c193154b92bc7
75 N0cc963fecaf9457faafcd0af498c2b5a schema:volumeNumber 464
76 rdf:type schema:PublicationVolume
77 N1381659c74a3403eb186fe096216cf32 rdf:first sg:person.01231021561.55
78 rdf:rest N0b6da3aea6cc4052b847bb79e713e6f7
79 N159aa7daedd0442494eace44b70b913c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Citrus
81 rdf:type schema:DefinedTerm
82 N15ec0aa6b6f44603808c193154b92bc7 rdf:first sg:person.01063162363.57
83 rdf:rest Na8bffecf11d04e24af5ca183903184f6
84 N2115338ad20a447f80f213c515754a16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Platinum
86 rdf:type schema:DefinedTerm
87 N23a663e8cb9542f6b117a67beaa63e57 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N276edc7b87b4431dbf264d4f8cca2a67 rdf:first sg:person.0777447511.55
90 rdf:rest N8f87fce4b2ad457e8c71e6fbefcddc03
91 N2ebfa5767a5349b18ec3616814cb6beb rdf:first sg:person.01311434577.20
92 rdf:rest N276edc7b87b4431dbf264d4f8cca2a67
93 N2ee6b6426cf342f4a4419dad7254842b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Spectrum Analysis, Raman
95 rdf:type schema:DefinedTerm
96 N30d27c4cd0ea4eb89aa840a30d8e7252 schema:issueNumber 7287
97 rdf:type schema:PublicationIssue
98 N4c076408906c48b28df78cde980a98cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Pesticide Residues
100 rdf:type schema:DefinedTerm
101 N5d839eade3f84ae7871077ea5639fe60 rdf:first sg:person.01177413142.10
102 rdf:rest N6c7a3a6ae71a465294ccb5366e391b1a
103 N5fd54efe4f4e4871a1cc32dc60188889 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adsorption
105 rdf:type schema:DefinedTerm
106 N64fe3f8ababe47ac8c324a680fe7ef95 schema:name nlm_unique_id
107 schema:value 0410462
108 rdf:type schema:PropertyValue
109 N69fa561a78414d7bb9362251c9fefcec schema:name readcube_id
110 schema:value 410c960526c7bdc94093b19d3237ed1113a3d1fbc470eb88a4cb1fa67241c3f7
111 rdf:type schema:PropertyValue
112 N6c7a3a6ae71a465294ccb5366e391b1a rdf:first sg:person.0661657753.81
113 rdf:rest N1381659c74a3403eb186fe096216cf32
114 N7f9b60b541374bc092db623a2f4dbc80 schema:name doi
115 schema:value 10.1038/nature08907
116 rdf:type schema:PropertyValue
117 N8101213189d94da99bcdc90b0ca37eb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Yeasts
119 rdf:type schema:DefinedTerm
120 N8ee73f6882f343f7af492ead4f42e3aa schema:name pubmed_id
121 schema:value 20237566
122 rdf:type schema:PropertyValue
123 N8f87fce4b2ad457e8c71e6fbefcddc03 rdf:first sg:person.0666031220.40
124 rdf:rest Ncbc0926df94b46a7965b3191da1a6dde
125 N94e15f6113d2462d8b722fa8098bc427 rdf:first sg:person.01275206720.10
126 rdf:rest N2ebfa5767a5349b18ec3616814cb6beb
127 Na2621b3cdd46442bb44a9b1cb9c6f116 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Aluminum Oxide
129 rdf:type schema:DefinedTerm
130 Na8bffecf11d04e24af5ca183903184f6 rdf:first sg:person.0735175411.53
131 rdf:rest Nbbe03b3bfaed424d9a8a867045cf1d14
132 Nb930200b0549455f95189de8ee93ee29 schema:name dimensions_id
133 schema:value pub.1013655144
134 rdf:type schema:PropertyValue
135 Nbbe03b3bfaed424d9a8a867045cf1d14 rdf:first sg:person.01146476124.67
136 rdf:rest rdf:nil
137 Nc103ebfdb7fe4f75a77c6d459d40a867 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Metal Nanoparticles
139 rdf:type schema:DefinedTerm
140 Nc2fa80ce627e4e70985f0858a72dc663 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Fruit
142 rdf:type schema:DefinedTerm
143 Nc628ca5ef31d48c898397c9d52a7e2a9 rdf:first sg:person.01274044256.94
144 rdf:rest N5d839eade3f84ae7871077ea5639fe60
145 Ncbc0926df94b46a7965b3191da1a6dde rdf:first sg:person.0727520463.27
146 rdf:rest Nc628ca5ef31d48c898397c9d52a7e2a9
147 Ndeb442198fb54382830bea4b41c614dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Hydrogen
149 rdf:type schema:DefinedTerm
150 Ne0d22b9e1e664050bd0a77e654a9c6ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Gold
152 rdf:type schema:DefinedTerm
153 Nf1ab82d2600f495da2e367edbfda5a02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Silicon Dioxide
155 rdf:type schema:DefinedTerm
156 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
157 schema:name Chemical Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Chemistry (incl. Structural)
161 rdf:type schema:DefinedTerm
162 sg:grant.3046844 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
163 rdf:type schema:MonetaryGrant
164 sg:grant.3077265 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
165 rdf:type schema:MonetaryGrant
166 sg:grant.4968881 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08907
167 rdf:type schema:MonetaryGrant
168 sg:journal.1018957 schema:issn 0090-0028
169 1476-4687
170 schema:name Nature
171 rdf:type schema:Periodical
172 sg:person.01063162363.57 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
173 schema:familyName Ren
174 schema:givenName Bin
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063162363.57
176 rdf:type schema:Person
177 sg:person.01146476124.67 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
178 schema:familyName Tian
179 schema:givenName Zhong Qun
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146476124.67
181 rdf:type schema:Person
182 sg:person.01177413142.10 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
183 schema:familyName Fan
184 schema:givenName Feng Ru
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177413142.10
186 rdf:type schema:Person
187 sg:person.01231021561.55 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
188 schema:familyName Zhou
189 schema:givenName Zhi You
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231021561.55
191 rdf:type schema:Person
192 sg:person.01274044256.94 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
193 schema:familyName Zhou
194 schema:givenName Xiao Shun
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274044256.94
196 rdf:type schema:Person
197 sg:person.01275206720.10 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
198 schema:familyName Li
199 schema:givenName Jian Feng
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206720.10
201 rdf:type schema:Person
202 sg:person.01311434577.20 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
203 schema:familyName Huang
204 schema:givenName Yi Fan
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311434577.20
206 rdf:type schema:Person
207 sg:person.0661657753.81 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
208 schema:familyName Zhang
209 schema:givenName Wei
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661657753.81
211 rdf:type schema:Person
212 sg:person.0666031220.40 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
213 schema:familyName Yang
214 schema:givenName Zhi Lin
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666031220.40
216 rdf:type schema:Person
217 sg:person.0727520463.27 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
218 schema:familyName Li
219 schema:givenName Song Bo
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727520463.27
221 rdf:type schema:Person
222 sg:person.0735175411.53 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
223 schema:familyName Wang
224 schema:givenName Zhong Lin
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735175411.53
226 rdf:type schema:Person
227 sg:person.0777447511.55 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
228 schema:familyName Ding
229 schema:givenName Yong
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777447511.55
231 rdf:type schema:Person
232 sg:pub.10.1038/nbt.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033512552
233 https://doi.org/10.1038/nbt.1501
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nbt1377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035474832
236 https://doi.org/10.1038/nbt1377
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nmat2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245986
239 https://doi.org/10.1038/nmat2162
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nnano.2008.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010082119
242 https://doi.org/10.1038/nnano.2008.189
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/physci241020a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006984282
245 https://doi.org/10.1038/physci241020a0
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0009-2614(99)01451-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049321123
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/ac901389p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071527
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1021/ar7002804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013556553
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1021/ar800041s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151765
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1021/ja017406b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055818778
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1021/la026706j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029846239
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1021/la9601871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019388273
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1021/nl025598i schema:sameAs https://app.dimensions.ai/details/publication/pub.1010182143
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1021/nl0515753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424100
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1021/nl051618f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216426
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1039/b616986d schema:sameAs https://app.dimensions.ai/details/publication/pub.1031277989
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1039/b707872m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015198344
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1039/b708841h schema:sameAs https://app.dimensions.ai/details/publication/pub.1042866356
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1063/1.120877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685052
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1063/1.2891086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057879695
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1073/pnas.0408319102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048259134
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1103/physrevlett.78.1667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814800
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1103/physrevlett.92.096101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828007
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1103/revmodphys.57.783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839078
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.275.5303.1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032000189
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.297.5586.1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005232241
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1146/annurev.biophys.26.1.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039830881
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1146/annurev.physchem.54.011002.103833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040892702
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1366/000370206776593762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065256954
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
296 schema:name State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
299 schema:name School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245, USA
300 State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...