Lock and key colloids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03

AUTHORS

S. Sacanna, W. T. M. Irvine, P. M. Chaikin, D. J. Pine

ABSTRACT

New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly. More... »

PAGES

575

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08906

DOI

http://dx.doi.org/10.1038/nature08906

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045926273

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20336142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sacanna", 
        "givenName": "S.", 
        "id": "sg:person.0653657731.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653657731.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Irvine", 
        "givenName": "W. T. M.", 
        "id": "sg:person.07531715065.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531715065.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikin", 
        "givenName": "P. M.", 
        "id": "sg:person.016355051605.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pine", 
        "givenName": "D. J.", 
        "id": "sg:person.01162252252.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162252252.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800579", 
          "https://doi.org/10.1038/nature06560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/84/68006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009137955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500507102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021484242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(68)90272-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024238085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cber.18940270364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046790y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046790y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.1994.1124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044752377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01517273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044847752", 
          "https://doi.org/10.1007/bf01517273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2981795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049302336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-6622(86)80274-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049884553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-8686(98)00071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050880420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955834", 
          "https://doi.org/10.1038/nature06508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1740347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057803139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/20/6/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229266"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08906", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3077270", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7288", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Lock and key colloids", 
    "pagination": "575", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dac48d18483282179eeb3e4ac84a2fb76832f4bafd763436faedd8893be9ca21"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20336142"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08906"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045926273"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08906", 
      "https://app.dimensions.ai/details/publication/pub.1045926273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08906"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08906'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08906'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08906'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08906'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08906 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N0912c5915dcd42528eb7cab681b16fc5
4 schema:citation sg:pub.10.1007/bf01517273
5 sg:pub.10.1038/382607a0
6 sg:pub.10.1038/nature06508
7 sg:pub.10.1038/nature06560
8 https://doi.org/10.1002/cber.18940270364
9 https://doi.org/10.1006/jcis.1994.1124
10 https://doi.org/10.1016/0021-9797(68)90272-5
11 https://doi.org/10.1016/0166-6622(86)80274-8
12 https://doi.org/10.1016/s0001-8686(98)00071-2
13 https://doi.org/10.1021/la046790y
14 https://doi.org/10.1063/1.1740347
15 https://doi.org/10.1063/1.2981795
16 https://doi.org/10.1073/pnas.0500507102
17 https://doi.org/10.1209/0295-5075/20/6/015
18 https://doi.org/10.1209/0295-5075/84/68006
19 schema:datePublished 2010-03
20 schema:datePublishedReg 2010-03-01
21 schema:description New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N4a77ed89d05846d2b62f2b006b44abe9
26 Nd752a84079be4961b8b789ddf51e9d2c
27 sg:journal.1018957
28 schema:name Lock and key colloids
29 schema:pagination 575
30 schema:productId N108d56b608c1431c9f1a013e89e76975
31 N15a4f0c63dc545f88d3a0e8e9bd8c4dd
32 N6c424ab76de442de83b2c9ec3f093a87
33 Ndfb7e4417d054d5782fb6127b8d930dd
34 Nf5dd5c0f2dbb4815933283ee1228dbfd
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045926273
36 https://doi.org/10.1038/nature08906
37 schema:sdDatePublished 2019-04-11T10:19
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N1c7f8ac815b84b2a83383522ad853b6e
40 schema:url https://www.nature.com/articles/nature08906
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0912c5915dcd42528eb7cab681b16fc5 rdf:first sg:person.0653657731.00
45 rdf:rest Nd1c85e0346d443d8bfcb8f152d395361
46 N108d56b608c1431c9f1a013e89e76975 schema:name readcube_id
47 schema:value dac48d18483282179eeb3e4ac84a2fb76832f4bafd763436faedd8893be9ca21
48 rdf:type schema:PropertyValue
49 N15a4f0c63dc545f88d3a0e8e9bd8c4dd schema:name pubmed_id
50 schema:value 20336142
51 rdf:type schema:PropertyValue
52 N1c7f8ac815b84b2a83383522ad853b6e schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N4a77ed89d05846d2b62f2b006b44abe9 schema:volumeNumber 464
55 rdf:type schema:PublicationVolume
56 N6c424ab76de442de83b2c9ec3f093a87 schema:name doi
57 schema:value 10.1038/nature08906
58 rdf:type schema:PropertyValue
59 N8277b35559714f719b0169ecf7308c7e rdf:first sg:person.01162252252.18
60 rdf:rest rdf:nil
61 N8bd9c96dd4204afb9700e121d45f4a2d rdf:first sg:person.016355051605.83
62 rdf:rest N8277b35559714f719b0169ecf7308c7e
63 Nd1c85e0346d443d8bfcb8f152d395361 rdf:first sg:person.07531715065.90
64 rdf:rest N8bd9c96dd4204afb9700e121d45f4a2d
65 Nd752a84079be4961b8b789ddf51e9d2c schema:issueNumber 7288
66 rdf:type schema:PublicationIssue
67 Ndfb7e4417d054d5782fb6127b8d930dd schema:name dimensions_id
68 schema:value pub.1045926273
69 rdf:type schema:PropertyValue
70 Nf5dd5c0f2dbb4815933283ee1228dbfd schema:name nlm_unique_id
71 schema:value 0410462
72 rdf:type schema:PropertyValue
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
77 schema:name Macromolecular and Materials Chemistry
78 rdf:type schema:DefinedTerm
79 sg:grant.3077270 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08906
80 rdf:type schema:MonetaryGrant
81 sg:journal.1018957 schema:issn 0090-0028
82 1476-4687
83 schema:name Nature
84 rdf:type schema:Periodical
85 sg:person.01162252252.18 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
86 schema:familyName Pine
87 schema:givenName D. J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162252252.18
89 rdf:type schema:Person
90 sg:person.016355051605.83 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
91 schema:familyName Chaikin
92 schema:givenName P. M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83
94 rdf:type schema:Person
95 sg:person.0653657731.00 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
96 schema:familyName Sacanna
97 schema:givenName S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653657731.00
99 rdf:type schema:Person
100 sg:person.07531715065.90 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
101 schema:familyName Irvine
102 schema:givenName W. T. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531715065.90
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01517273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044847752
106 https://doi.org/10.1007/bf01517273
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
109 https://doi.org/10.1038/382607a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature06508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
112 https://doi.org/10.1038/nature06508
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature06560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800579
115 https://doi.org/10.1038/nature06560
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/cber.18940270364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030224509
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1006/jcis.1994.1124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044752377
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0021-9797(68)90272-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024238085
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0166-6622(86)80274-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049884553
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0001-8686(98)00071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050880420
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/la046790y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195954
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.1740347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057803139
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.2981795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049302336
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1073/pnas.0500507102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484242
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1209/0295-5075/20/6/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229266
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1209/0295-5075/84/68006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009137955
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
140 schema:name Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...