Super-resolution biomolecular crystallography with low-resolution data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04

AUTHORS

Gunnar F. Schröder, Michael Levitt, Axel T. Brunger

ABSTRACT

X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools. More... »

PAGES

1218

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08892

DOI

http://dx.doi.org/10.1038/nature08892

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045292267

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20376006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligopeptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Static Electricity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Institut f\u00fcr Strukturbiologie und Biophysik (ISB-3), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schr\u00f6der", 
        "givenName": "Gunnar F.", 
        "id": "sg:person.0657100211.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657100211.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitt", 
        "givenName": "Michael", 
        "id": "sg:person.0623303363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623303363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA", 
            "Howard Hughes Medical Institute,", 
            "Department of Molecular and Cellular Physiology,", 
            "Department of Neurology and Neurological Sciences,", 
            "Department of Photon Science, Stanford University, James H. Clark Center E300, 318 Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunger", 
        "givenName": "Axel T.", 
        "id": "sg:person.0740476750.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740476750.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0108767396004370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000197717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001896118", 
          "https://doi.org/10.1038/nature06249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143485", 
          "https://doi.org/10.1038/nature03327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143485", 
          "https://doi.org/10.1038/nature03327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998004119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006630174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(84)81085-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008463970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2007.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010421931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(83)90008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013127184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x56001741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013693797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739480000794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014953840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444908001741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015635856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)90964-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016873603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(85)90230-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998003254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019779527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(69)90421-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019804581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021005596", 
          "https://doi.org/10.1038/nature05580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023778044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767390002082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024172259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739477001958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026220626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x52002161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027030296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.58.2.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029334562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030443070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(88)90211-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030633520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400301101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033282442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998006635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034622601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035232696", 
          "https://doi.org/10.1038/nprot.2007.406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2008.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035324280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767391001071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739478001904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038553422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767389012882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039582550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(83)80129-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041946802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050591188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052553370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610081104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052961777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053671309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2983426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062579164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08892", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3069598", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441319", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2517173", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441339", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699216", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7292", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Super-resolution biomolecular crystallography with low-resolution data", 
    "pagination": "1218", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7be7c30ec95b203c21f2e12ca08c81f7ac91e11d65ebc467f60d8f2ca89df5d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20376006"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08892"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045292267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08892", 
      "https://app.dimensions.ai/details/publication/pub.1045292267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08892"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08892'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      76 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08892 schema:about N2f3ba1c7cd644e6b8c6f975dd3db67c4
2 N4bfeff126f6e47a1b427b3ef9b6e673e
3 N5bc8309a0d07462aac5daf951ef4bb68
4 N691356c41b084a1b914e27c9041bdfe5
5 N9597955f8dfb4dd7b641ea1124a928e8
6 Nb06b337f356547a09fe60e74d5158dad
7 Nd475a5114e5a45bbb41f0552cc074e49
8 Nd84135b47dc648a3bec5203d9037e945
9 Ndd4d3a00bd144a6a8b8a8aa22dd8b558
10 Nf11b9e4d27114a4999ce8af70e87dbf0
11 anzsrc-for:02
12 anzsrc-for:0299
13 schema:author Na1fb70a94d8a4681be89fe62349ed68f
14 schema:citation sg:pub.10.1038/nature03327
15 sg:pub.10.1038/nature05580
16 sg:pub.10.1038/nature06249
17 sg:pub.10.1038/nature08705
18 sg:pub.10.1038/nprot.2007.406
19 https://doi.org/10.1002/prot.340190403
20 https://doi.org/10.1006/jmbi.1993.1626
21 https://doi.org/10.1016/0014-5793(84)81085-6
22 https://doi.org/10.1016/0022-2836(69)90421-5
23 https://doi.org/10.1016/0022-2836(83)90008-6
24 https://doi.org/10.1016/0022-2836(85)90230-x
25 https://doi.org/10.1016/0022-2836(88)90211-2
26 https://doi.org/10.1016/0022-2836(92)90964-l
27 https://doi.org/10.1016/j.jsb.2004.03.002
28 https://doi.org/10.1016/j.str.2007.09.021
29 https://doi.org/10.1016/j.str.2008.02.010
30 https://doi.org/10.1016/s0022-2836(83)80129-6
31 https://doi.org/10.1073/pnas.0400301101
32 https://doi.org/10.1073/pnas.0610081104
33 https://doi.org/10.1073/pnas.58.2.420
34 https://doi.org/10.1093/nar/gkg571
35 https://doi.org/10.1093/nar/gkh398
36 https://doi.org/10.1093/nar/gki524
37 https://doi.org/10.1107/s0108767389012882
38 https://doi.org/10.1107/s0108767390002082
39 https://doi.org/10.1107/s0108767391001071
40 https://doi.org/10.1107/s0108767396004370
41 https://doi.org/10.1107/s0365110x52002161
42 https://doi.org/10.1107/s0365110x56001741
43 https://doi.org/10.1107/s0567739477001958
44 https://doi.org/10.1107/s0567739478001904
45 https://doi.org/10.1107/s0567739480000794
46 https://doi.org/10.1107/s0907444908001741
47 https://doi.org/10.1107/s0907444998003254
48 https://doi.org/10.1107/s0907444998004119
49 https://doi.org/10.1107/s0907444998006635
50 https://doi.org/10.1126/science.2983426
51 schema:datePublished 2010-04
52 schema:datePublishedReg 2010-04-01
53 schema:description X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N265a8c2d88a147d7a035c3c4bb25f133
58 N36e4b9c9b15d41c08f64d7125ff1fef0
59 sg:journal.1018957
60 schema:name Super-resolution biomolecular crystallography with low-resolution data
61 schema:pagination 1218
62 schema:productId N63b33649d9314926bc15644b29947282
63 N9d819b845bfa4c63a4764773912b0dad
64 Nb37809a1b787491889a7f4a2b662a409
65 Nb481deb4a7994751b7a1a7f4f14a38fb
66 Nba2bd2485d764cb6b38021b31c0ad3c6
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045292267
68 https://doi.org/10.1038/nature08892
69 schema:sdDatePublished 2019-04-11T10:19
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N80df948688a74b2ab8317bdecd39c8c2
72 schema:url https://www.nature.com/articles/nature08892
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N24d1e60482214e7c8c4d6da9e0dcf567 rdf:first sg:person.0740476750.50
77 rdf:rest rdf:nil
78 N265a8c2d88a147d7a035c3c4bb25f133 schema:issueNumber 7292
79 rdf:type schema:PublicationIssue
80 N2f3ba1c7cd644e6b8c6f975dd3db67c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Oligopeptides
82 rdf:type schema:DefinedTerm
83 N36e4b9c9b15d41c08f64d7125ff1fef0 schema:volumeNumber 464
84 rdf:type schema:PublicationVolume
85 N4bfeff126f6e47a1b427b3ef9b6e673e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Crystallography, X-Ray
87 rdf:type schema:DefinedTerm
88 N5bc8309a0d07462aac5daf951ef4bb68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Protein Conformation
90 rdf:type schema:DefinedTerm
91 N63b33649d9314926bc15644b29947282 schema:name nlm_unique_id
92 schema:value 0410462
93 rdf:type schema:PropertyValue
94 N691356c41b084a1b914e27c9041bdfe5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Molecular
96 rdf:type schema:DefinedTerm
97 N770188fa62c0411285dd8c79f6b957b4 rdf:first sg:person.0623303363.98
98 rdf:rest N24d1e60482214e7c8c4d6da9e0dcf567
99 N80df948688a74b2ab8317bdecd39c8c2 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N9597955f8dfb4dd7b641ea1124a928e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Crystallization
103 rdf:type schema:DefinedTerm
104 N9d819b845bfa4c63a4764773912b0dad schema:name doi
105 schema:value 10.1038/nature08892
106 rdf:type schema:PropertyValue
107 Na1fb70a94d8a4681be89fe62349ed68f rdf:first sg:person.0657100211.98
108 rdf:rest N770188fa62c0411285dd8c79f6b957b4
109 Nb06b337f356547a09fe60e74d5158dad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Likelihood Functions
111 rdf:type schema:DefinedTerm
112 Nb37809a1b787491889a7f4a2b662a409 schema:name pubmed_id
113 schema:value 20376006
114 rdf:type schema:PropertyValue
115 Nb481deb4a7994751b7a1a7f4f14a38fb schema:name dimensions_id
116 schema:value pub.1045292267
117 rdf:type schema:PropertyValue
118 Nba2bd2485d764cb6b38021b31c0ad3c6 schema:name readcube_id
119 schema:value d7be7c30ec95b203c21f2e12ca08c81f7ac91e11d65ebc467f60d8f2ca89df5d
120 rdf:type schema:PropertyValue
121 Nd475a5114e5a45bbb41f0552cc074e49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Static Electricity
123 rdf:type schema:DefinedTerm
124 Nd84135b47dc648a3bec5203d9037e945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Electrons
126 rdf:type schema:DefinedTerm
127 Ndd4d3a00bd144a6a8b8a8aa22dd8b558 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Software
129 rdf:type schema:DefinedTerm
130 Nf11b9e4d27114a4999ce8af70e87dbf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Databases, Protein
132 rdf:type schema:DefinedTerm
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
137 schema:name Other Physical Sciences
138 rdf:type schema:DefinedTerm
139 sg:grant.2441319 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
140 rdf:type schema:MonetaryGrant
141 sg:grant.2441339 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
142 rdf:type schema:MonetaryGrant
143 sg:grant.2517173 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
144 rdf:type schema:MonetaryGrant
145 sg:grant.2699216 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
146 rdf:type schema:MonetaryGrant
147 sg:grant.3069598 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
148 rdf:type schema:MonetaryGrant
149 sg:journal.1018957 schema:issn 0090-0028
150 1476-4687
151 schema:name Nature
152 rdf:type schema:Periodical
153 sg:person.0623303363.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
154 schema:familyName Levitt
155 schema:givenName Michael
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623303363.98
157 rdf:type schema:Person
158 sg:person.0657100211.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
159 schema:familyName Schröder
160 schema:givenName Gunnar F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657100211.98
162 rdf:type schema:Person
163 sg:person.0740476750.50 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
164 schema:familyName Brunger
165 schema:givenName Axel T.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740476750.50
167 rdf:type schema:Person
168 sg:pub.10.1038/nature03327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006143485
169 https://doi.org/10.1038/nature03327
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature05580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021005596
172 https://doi.org/10.1038/nature05580
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature06249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001896118
175 https://doi.org/10.1038/nature06249
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature08705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028687752
178 https://doi.org/10.1038/nature08705
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nprot.2007.406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035232696
181 https://doi.org/10.1038/nprot.2007.406
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/prot.340190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027941628
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/jmbi.1993.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443070
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0014-5793(84)81085-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008463970
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0022-2836(69)90421-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019804581
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0022-2836(83)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013127184
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0022-2836(85)90230-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019285966
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0022-2836(88)90211-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030633520
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0022-2836(92)90964-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1016873603
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jsb.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050591188
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.str.2007.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010421931
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.str.2008.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035324280
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0022-2836(83)80129-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041946802
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.0400301101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033282442
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0610081104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052961777
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.58.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029334562
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gkg571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023778044
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkh398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052553370
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gki524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053671309
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1107/s0108767389012882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039582550
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1107/s0108767390002082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172259
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1107/s0108767391001071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464667
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1107/s0108767396004370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000197717
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1107/s0365110x52002161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030296
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1107/s0365110x56001741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013693797
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1107/s0567739477001958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220626
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1107/s0567739478001904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038553422
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1107/s0567739480000794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014953840
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1107/s0907444908001741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015635856
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1107/s0907444998003254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019779527
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1107/s0907444998004119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006630174
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1107/s0907444998006635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034622601
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1126/science.2983426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062579164
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
248 schema:name Department of Molecular and Cellular Physiology,
249 Department of Neurology and Neurological Sciences,
250 Department of Photon Science, Stanford University, James H. Clark Center E300, 318 Campus Drive, Stanford, California 94305, USA
251 Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA
252 Howard Hughes Medical Institute,
253 Institut für Strukturbiologie und Biophysik (ISB-3), Forschungszentrum Jülich, 52425 Jülich, Germany
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...