Super-resolution biomolecular crystallography with low-resolution data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04

AUTHORS

Gunnar F. Schröder, Michael Levitt, Axel T. Brunger

ABSTRACT

X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools. More... »

PAGES

1218

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08892

DOI

http://dx.doi.org/10.1038/nature08892

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045292267

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20376006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligopeptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Static Electricity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Institut f\u00fcr Strukturbiologie und Biophysik (ISB-3), Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany", 
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schr\u00f6der", 
        "givenName": "Gunnar F.", 
        "id": "sg:person.0657100211.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657100211.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitt", 
        "givenName": "Michael", 
        "id": "sg:person.0623303363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623303363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA", 
            "Howard Hughes Medical Institute,", 
            "Department of Molecular and Cellular Physiology,", 
            "Department of Neurology and Neurological Sciences,", 
            "Department of Photon Science, Stanford University, James H. Clark Center E300, 318 Campus Drive, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunger", 
        "givenName": "Axel T.", 
        "id": "sg:person.0740476750.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740476750.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0108767396004370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000197717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001896118", 
          "https://doi.org/10.1038/nature06249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143485", 
          "https://doi.org/10.1038/nature03327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006143485", 
          "https://doi.org/10.1038/nature03327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998004119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006630174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(84)81085-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008463970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2007.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010421931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(83)90008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013127184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x56001741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013693797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739480000794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014953840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444908001741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015635856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)90964-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016873603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(85)90230-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998003254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019779527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(69)90421-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019804581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021005596", 
          "https://doi.org/10.1038/nature05580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023778044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767390002082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024172259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739477001958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026220626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x52002161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027030296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028687752", 
          "https://doi.org/10.1038/nature08705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.58.2.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029334562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030443070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(88)90211-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030633520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400301101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033282442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998006635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034622601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035232696", 
          "https://doi.org/10.1038/nprot.2007.406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2008.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035324280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767391001071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739478001904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038553422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767389012882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039582550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(83)80129-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041946802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050591188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052553370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610081104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052961777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053671309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2983426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062579164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08892", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3069598", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441319", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2517173", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2441339", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699216", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7292", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Super-resolution biomolecular crystallography with low-resolution data", 
    "pagination": "1218", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7be7c30ec95b203c21f2e12ca08c81f7ac91e11d65ebc467f60d8f2ca89df5d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20376006"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08892"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045292267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08892", 
      "https://app.dimensions.ai/details/publication/pub.1045292267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08892"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08892'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08892'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      76 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08892 schema:about N20ba36fb6052467fb43cd82cb1e68f2d
2 N2be8f65fb4f04485ae4bd8786b5694e4
3 N5b61dfa6df1544ec9cb2fc59e830e6e6
4 N63be54d6cc45416fa51d5c4b353a4e2b
5 N6f4afdf72abb421f85c3f7c3b1043e40
6 N739d25a5694d434a9e174362d3516727
7 Nd88b2d8df2cf449ebbb05312e03bc23c
8 Nea5673ac0c6e42b88fff7597eadeb227
9 Nf50a0502372f4484b330909ec0d95a39
10 Nf8f55654d01b48cabc670a5d1d0a1eb3
11 anzsrc-for:02
12 anzsrc-for:0299
13 schema:author N3efb3db440754f38b91bf0ae09773281
14 schema:citation sg:pub.10.1038/nature03327
15 sg:pub.10.1038/nature05580
16 sg:pub.10.1038/nature06249
17 sg:pub.10.1038/nature08705
18 sg:pub.10.1038/nprot.2007.406
19 https://doi.org/10.1002/prot.340190403
20 https://doi.org/10.1006/jmbi.1993.1626
21 https://doi.org/10.1016/0014-5793(84)81085-6
22 https://doi.org/10.1016/0022-2836(69)90421-5
23 https://doi.org/10.1016/0022-2836(83)90008-6
24 https://doi.org/10.1016/0022-2836(85)90230-x
25 https://doi.org/10.1016/0022-2836(88)90211-2
26 https://doi.org/10.1016/0022-2836(92)90964-l
27 https://doi.org/10.1016/j.jsb.2004.03.002
28 https://doi.org/10.1016/j.str.2007.09.021
29 https://doi.org/10.1016/j.str.2008.02.010
30 https://doi.org/10.1016/s0022-2836(83)80129-6
31 https://doi.org/10.1073/pnas.0400301101
32 https://doi.org/10.1073/pnas.0610081104
33 https://doi.org/10.1073/pnas.58.2.420
34 https://doi.org/10.1093/nar/gkg571
35 https://doi.org/10.1093/nar/gkh398
36 https://doi.org/10.1093/nar/gki524
37 https://doi.org/10.1107/s0108767389012882
38 https://doi.org/10.1107/s0108767390002082
39 https://doi.org/10.1107/s0108767391001071
40 https://doi.org/10.1107/s0108767396004370
41 https://doi.org/10.1107/s0365110x52002161
42 https://doi.org/10.1107/s0365110x56001741
43 https://doi.org/10.1107/s0567739477001958
44 https://doi.org/10.1107/s0567739478001904
45 https://doi.org/10.1107/s0567739480000794
46 https://doi.org/10.1107/s0907444908001741
47 https://doi.org/10.1107/s0907444998003254
48 https://doi.org/10.1107/s0907444998004119
49 https://doi.org/10.1107/s0907444998006635
50 https://doi.org/10.1126/science.2983426
51 schema:datePublished 2010-04
52 schema:datePublishedReg 2010-04-01
53 schema:description X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N42a558445bde416dbc2111b4cadfe04b
58 N8ac2d878dace47e8a6b663b6c5e422f6
59 sg:journal.1018957
60 schema:name Super-resolution biomolecular crystallography with low-resolution data
61 schema:pagination 1218
62 schema:productId N268c2025216b46d49822db17c4be4e60
63 N2ada4ef072a74e0090583beb5a3a3b7f
64 N6518cc04555b4063ac889fb07f48cf80
65 N7da95c87bab94dc08186f9fbfa2f1dc1
66 Nd370f5ffe7a54c78a4eee48a194af107
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045292267
68 https://doi.org/10.1038/nature08892
69 schema:sdDatePublished 2019-04-11T10:19
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N274fcbc6966240bf99fc6ea35ed60819
72 schema:url https://www.nature.com/articles/nature08892
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N20ba36fb6052467fb43cd82cb1e68f2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Likelihood Functions
78 rdf:type schema:DefinedTerm
79 N268c2025216b46d49822db17c4be4e60 schema:name doi
80 schema:value 10.1038/nature08892
81 rdf:type schema:PropertyValue
82 N274fcbc6966240bf99fc6ea35ed60819 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N2ada4ef072a74e0090583beb5a3a3b7f schema:name pubmed_id
85 schema:value 20376006
86 rdf:type schema:PropertyValue
87 N2be8f65fb4f04485ae4bd8786b5694e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Databases, Protein
89 rdf:type schema:DefinedTerm
90 N3efb3db440754f38b91bf0ae09773281 rdf:first sg:person.0657100211.98
91 rdf:rest N5725dde4e3574affae5d51ccc87aa1e8
92 N42a558445bde416dbc2111b4cadfe04b schema:volumeNumber 464
93 rdf:type schema:PublicationVolume
94 N5725dde4e3574affae5d51ccc87aa1e8 rdf:first sg:person.0623303363.98
95 rdf:rest Nec573c9ced6b4c409f22aa642ae2e411
96 N5b61dfa6df1544ec9cb2fc59e830e6e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Software
98 rdf:type schema:DefinedTerm
99 N63be54d6cc45416fa51d5c4b353a4e2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Electrons
101 rdf:type schema:DefinedTerm
102 N6518cc04555b4063ac889fb07f48cf80 schema:name nlm_unique_id
103 schema:value 0410462
104 rdf:type schema:PropertyValue
105 N6f4afdf72abb421f85c3f7c3b1043e40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Molecular
107 rdf:type schema:DefinedTerm
108 N739d25a5694d434a9e174362d3516727 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Crystallization
110 rdf:type schema:DefinedTerm
111 N7da95c87bab94dc08186f9fbfa2f1dc1 schema:name readcube_id
112 schema:value d7be7c30ec95b203c21f2e12ca08c81f7ac91e11d65ebc467f60d8f2ca89df5d
113 rdf:type schema:PropertyValue
114 N8ac2d878dace47e8a6b663b6c5e422f6 schema:issueNumber 7292
115 rdf:type schema:PublicationIssue
116 Nd370f5ffe7a54c78a4eee48a194af107 schema:name dimensions_id
117 schema:value pub.1045292267
118 rdf:type schema:PropertyValue
119 Nd88b2d8df2cf449ebbb05312e03bc23c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Crystallography, X-Ray
121 rdf:type schema:DefinedTerm
122 Nea5673ac0c6e42b88fff7597eadeb227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Protein Conformation
124 rdf:type schema:DefinedTerm
125 Nec573c9ced6b4c409f22aa642ae2e411 rdf:first sg:person.0740476750.50
126 rdf:rest rdf:nil
127 Nf50a0502372f4484b330909ec0d95a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Static Electricity
129 rdf:type schema:DefinedTerm
130 Nf8f55654d01b48cabc670a5d1d0a1eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Oligopeptides
132 rdf:type schema:DefinedTerm
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
137 schema:name Other Physical Sciences
138 rdf:type schema:DefinedTerm
139 sg:grant.2441319 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
140 rdf:type schema:MonetaryGrant
141 sg:grant.2441339 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
142 rdf:type schema:MonetaryGrant
143 sg:grant.2517173 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
144 rdf:type schema:MonetaryGrant
145 sg:grant.2699216 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
146 rdf:type schema:MonetaryGrant
147 sg:grant.3069598 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08892
148 rdf:type schema:MonetaryGrant
149 sg:journal.1018957 schema:issn 0090-0028
150 1476-4687
151 schema:name Nature
152 rdf:type schema:Periodical
153 sg:person.0623303363.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
154 schema:familyName Levitt
155 schema:givenName Michael
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623303363.98
157 rdf:type schema:Person
158 sg:person.0657100211.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
159 schema:familyName Schröder
160 schema:givenName Gunnar F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657100211.98
162 rdf:type schema:Person
163 sg:person.0740476750.50 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
164 schema:familyName Brunger
165 schema:givenName Axel T.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740476750.50
167 rdf:type schema:Person
168 sg:pub.10.1038/nature03327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006143485
169 https://doi.org/10.1038/nature03327
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature05580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021005596
172 https://doi.org/10.1038/nature05580
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature06249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001896118
175 https://doi.org/10.1038/nature06249
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature08705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028687752
178 https://doi.org/10.1038/nature08705
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nprot.2007.406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035232696
181 https://doi.org/10.1038/nprot.2007.406
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/prot.340190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027941628
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/jmbi.1993.1626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443070
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0014-5793(84)81085-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008463970
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0022-2836(69)90421-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019804581
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0022-2836(83)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013127184
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0022-2836(85)90230-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019285966
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0022-2836(88)90211-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030633520
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0022-2836(92)90964-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1016873603
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jsb.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050591188
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.str.2007.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010421931
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.str.2008.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035324280
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0022-2836(83)80129-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041946802
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.0400301101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033282442
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0610081104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052961777
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.58.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029334562
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gkg571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023778044
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkh398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052553370
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gki524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053671309
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1107/s0108767389012882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039582550
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1107/s0108767390002082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024172259
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1107/s0108767391001071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464667
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1107/s0108767396004370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000197717
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1107/s0365110x52002161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027030296
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1107/s0365110x56001741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013693797
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1107/s0567739477001958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026220626
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1107/s0567739478001904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038553422
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1107/s0567739480000794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014953840
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1107/s0907444908001741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015635856
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1107/s0907444998003254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019779527
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1107/s0907444998004119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006630174
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1107/s0907444998006635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034622601
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1126/science.2983426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062579164
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
248 schema:name Department of Molecular and Cellular Physiology,
249 Department of Neurology and Neurological Sciences,
250 Department of Photon Science, Stanford University, James H. Clark Center E300, 318 Campus Drive, Stanford, California 94305, USA
251 Department of Structural Biology, Stanford School of Medicine, D100 Fairchild Building, 299 West Campus Drive, Stanford, California 94305, USA
252 Howard Hughes Medical Institute,
253 Institut für Strukturbiologie und Biophysik (ISB-3), Forschungszentrum Jülich, 52425 Jülich, Germany
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...