Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-18

AUTHORS

Heinz Neumann, Kaihang Wang, Lloyd Davis, Maria Garcia-Alai, Jason W. Chin

ABSTRACT

The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells. More... »

PAGES

441

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08817

DOI

http://dx.doi.org/10.1038/nature08817

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007117586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20154731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alkynes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Azides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocatalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calmodulin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Codon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Copper", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Directed Molecular Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanococcus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Heinz", 
        "id": "sg:person.01025162542.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025162542.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kaihang", 
        "id": "sg:person.0661031734.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661031734.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "Lloyd", 
        "id": "sg:person.0657205457.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657205457.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Alai", 
        "givenName": "Maria", 
        "id": "sg:person.01271466572.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466572.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chin", 
        "givenName": "Jason W.", 
        "id": "sg:person.0577377352.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577377352.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bbrc.2008.04.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000537236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35025116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003337852", 
          "https://doi.org/10.1038/35025116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35025116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003337852", 
          "https://doi.org/10.1038/35025116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00010-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003802960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003901838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1367-5931(02)00376-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1367-5931(02)00376-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(02)02064-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011855763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012493486", 
          "https://doi.org/10.1038/nbt1314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018517323", 
          "https://doi.org/10.1038/nchembio.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja900553w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja900553w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0401517101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019951221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021109021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.24.13638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023993534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.274.50.35601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025893568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027363158", 
          "https://doi.org/10.1038/nrm2005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027363158", 
          "https://doi.org/10.1038/nrm2005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028820752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033064323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027007w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033544897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027007w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033544897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033941696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.294907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037511230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.172226299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510817103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037721129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820511", 
          "https://doi.org/10.1038/nchembio719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820511", 
          "https://doi.org/10.1038/nchembio719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1987.tb13580.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043684240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1984.tb08491.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044888092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0405362101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(03)00124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047935731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(03)00124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047935731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053548226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053548226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja971890u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1099191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026023394209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069192851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-18", 
    "datePublishedReg": "2010-03-18", 
    "description": "The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08817", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2779818", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2755601", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7287", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome", 
    "pagination": "441", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21e7caa31c33d96d838a21ed7ab951db859c305fa2f495a7c033884b72eb108e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20154731"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08817"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007117586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08817", 
      "https://app.dimensions.ai/details/publication/pub.1007117586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08817"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08817'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      78 URIs      40 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08817 schema:about N03568ac9780148cd8bfc36ad1e5aa7e8
2 N31639756e8df4162aafedad03a62c664
3 N484bcea4c1204d4cbfe23ba42a2c9cff
4 N514ab4faf7204e00ba3068c6c07e8916
5 N5f7c9b08cff945ab90e949ff9865af77
6 N71020c74df2745efba161a98ae33389a
7 N89e0e58794dc402bb5e48b743a602cee
8 Na1b8202709874a6cad40a8ef2d3a2e04
9 Nabbd3646779141599bf9c933fa86d650
10 Nb6fa7315eb644008a21982c208cb3455
11 Nbdc084b116c547998b12983b4f7f6cba
12 Ncb51aff0743b4133be6277c72af8b585
13 Ncc45931e6c7b4a4baf25071e7986bd64
14 Nd0c2f47dc391439cacf7ecf78567efb3
15 Nd53866d80b1b41e3abeec5276a779a1c
16 Ndc9879c912374ea7adc13a171650ca3c
17 Nde8e2ebc4afd459ab34e0a063e37387a
18 Ne0e632ea39634c57a07e8196c377cf77
19 Ne62029e2605d40e69ed403f3df8ad273
20 Ned0db446c90449eb9b5499a19f4a998a
21 anzsrc-for:06
22 anzsrc-for:0604
23 schema:author Nd8410bfb9e8a4dbbb2131fe22981aa2c
24 schema:citation sg:pub.10.1038/35025116
25 sg:pub.10.1038/nbt1314
26 sg:pub.10.1038/nchembio.73
27 sg:pub.10.1038/nchembio719
28 sg:pub.10.1038/nrm2005
29 https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5
30 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
31 https://doi.org/10.1006/jmbi.2001.4518
32 https://doi.org/10.1016/j.bbrc.2008.04.164
33 https://doi.org/10.1016/j.febslet.2005.11.010
34 https://doi.org/10.1016/s0968-0004(02)02064-9
35 https://doi.org/10.1016/s1074-5521(03)00124-8
36 https://doi.org/10.1016/s1367-5931(02)00376-9
37 https://doi.org/10.1021/ja027007w
38 https://doi.org/10.1021/ja900553w
39 https://doi.org/10.1021/ja971890u
40 https://doi.org/10.1073/pnas.0401517101
41 https://doi.org/10.1073/pnas.0405362101
42 https://doi.org/10.1073/pnas.0510817103
43 https://doi.org/10.1073/pnas.172226299
44 https://doi.org/10.1073/pnas.96.24.13638
45 https://doi.org/10.1074/jbc.274.50.35601
46 https://doi.org/10.1111/j.1432-1033.1984.tb08491.x
47 https://doi.org/10.1111/j.1432-1033.1987.tb13580.x
48 https://doi.org/10.1126/science.1069588
49 https://doi.org/10.1126/science.1099191
50 https://doi.org/10.1126/science.1131127
51 https://doi.org/10.1128/mmbr.00010-08
52 https://doi.org/10.1261/rna.294907
53 https://doi.org/10.2174/1568026023394209
54 schema:datePublished 2010-03-18
55 schema:datePublishedReg 2010-03-18
56 schema:description The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N19f8d4ee27174c419848215af3938e96
61 Nb9550f916b7e4e618b535fb17ed040a3
62 sg:journal.1018957
63 schema:name Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
64 schema:pagination 441
65 schema:productId N39cadfa9af9945dc966199e410dc8b9b
66 N558e8ea029e84cfea6859e09911f989d
67 N802ecfce3bbe4d0c8eac931374b938a1
68 Nbd6ec170b1f44af0a68cf304d0d4a321
69 Nf1c8e06435f54338bfbe5089ec22fbf8
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007117586
71 https://doi.org/10.1038/nature08817
72 schema:sdDatePublished 2019-04-11T09:52
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nf5591871b56b45f593b045c2fc30bcb2
75 schema:url https://www.nature.com/articles/nature08817
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N03568ac9780148cd8bfc36ad1e5aa7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Protein Biosynthesis
81 rdf:type schema:DefinedTerm
82 N08c1acb17e3a41f99a670e9c1d6e7c2a rdf:first sg:person.0657205457.57
83 rdf:rest Nea5f705cdbca4eeca0bba784d39268c0
84 N19f8d4ee27174c419848215af3938e96 schema:issueNumber 7287
85 rdf:type schema:PublicationIssue
86 N31639756e8df4162aafedad03a62c664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Calmodulin
88 rdf:type schema:DefinedTerm
89 N39cadfa9af9945dc966199e410dc8b9b schema:name pubmed_id
90 schema:value 20154731
91 rdf:type schema:PropertyValue
92 N3b34b0595b9c4da9ab5208ce25b0c562 rdf:first sg:person.0661031734.42
93 rdf:rest N08c1acb17e3a41f99a670e9c1d6e7c2a
94 N484bcea4c1204d4cbfe23ba42a2c9cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Codon
96 rdf:type schema:DefinedTerm
97 N514ab4faf7204e00ba3068c6c07e8916 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Models, Molecular
99 rdf:type schema:DefinedTerm
100 N558e8ea029e84cfea6859e09911f989d schema:name dimensions_id
101 schema:value pub.1007117586
102 rdf:type schema:PropertyValue
103 N5f7c9b08cff945ab90e949ff9865af77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Alkynes
105 rdf:type schema:DefinedTerm
106 N71020c74df2745efba161a98ae33389a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Methanococcus
108 rdf:type schema:DefinedTerm
109 N802ecfce3bbe4d0c8eac931374b938a1 schema:name doi
110 schema:value 10.1038/nature08817
111 rdf:type schema:PropertyValue
112 N89e0e58794dc402bb5e48b743a602cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Protein Conformation
114 rdf:type schema:DefinedTerm
115 Na1b8202709874a6cad40a8ef2d3a2e04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Cyclization
117 rdf:type schema:DefinedTerm
118 Nabbd3646779141599bf9c933fa86d650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genetic Code
120 rdf:type schema:DefinedTerm
121 Nb6fa7315eb644008a21982c208cb3455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name RNA, Transfer
123 rdf:type schema:DefinedTerm
124 Nb9550f916b7e4e618b535fb17ed040a3 schema:volumeNumber 464
125 rdf:type schema:PublicationVolume
126 Nbd6ec170b1f44af0a68cf304d0d4a321 schema:name readcube_id
127 schema:value 21e7caa31c33d96d838a21ed7ab951db859c305fa2f495a7c033884b72eb108e
128 rdf:type schema:PropertyValue
129 Nbdc084b116c547998b12983b4f7f6cba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Directed Molecular Evolution
131 rdf:type schema:DefinedTerm
132 Ncb51aff0743b4133be6277c72af8b585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Amino Acids
134 rdf:type schema:DefinedTerm
135 Ncc45931e6c7b4a4baf25071e7986bd64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name RNA, Messenger
137 rdf:type schema:DefinedTerm
138 Nd0c2f47dc391439cacf7ecf78567efb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Genetic Engineering
140 rdf:type schema:DefinedTerm
141 Nd53866d80b1b41e3abeec5276a779a1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Copper
143 rdf:type schema:DefinedTerm
144 Nd8410bfb9e8a4dbbb2131fe22981aa2c rdf:first sg:person.01025162542.24
145 rdf:rest N3b34b0595b9c4da9ab5208ce25b0c562
146 Ndc9879c912374ea7adc13a171650ca3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Azides
148 rdf:type schema:DefinedTerm
149 Nde8e2ebc4afd459ab34e0a063e37387a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Amino Acyl-tRNA Synthetases
151 rdf:type schema:DefinedTerm
152 Ne0e632ea39634c57a07e8196c377cf77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Protein Engineering
154 rdf:type schema:DefinedTerm
155 Ne62029e2605d40e69ed403f3df8ad273 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Ribosomes
157 rdf:type schema:DefinedTerm
158 Ne6822f7431c949738e1b12aaef8a7cd4 rdf:first sg:person.0577377352.27
159 rdf:rest rdf:nil
160 Nea5f705cdbca4eeca0bba784d39268c0 rdf:first sg:person.01271466572.65
161 rdf:rest Ne6822f7431c949738e1b12aaef8a7cd4
162 Ned0db446c90449eb9b5499a19f4a998a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Biocatalysis
164 rdf:type schema:DefinedTerm
165 Nf1c8e06435f54338bfbe5089ec22fbf8 schema:name nlm_unique_id
166 schema:value 0410462
167 rdf:type schema:PropertyValue
168 Nf5591871b56b45f593b045c2fc30bcb2 schema:name Springer Nature - SN SciGraph project
169 rdf:type schema:Organization
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
174 schema:name Genetics
175 rdf:type schema:DefinedTerm
176 sg:grant.2755601 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08817
177 rdf:type schema:MonetaryGrant
178 sg:grant.2779818 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08817
179 rdf:type schema:MonetaryGrant
180 sg:journal.1018957 schema:issn 0090-0028
181 1476-4687
182 schema:name Nature
183 rdf:type schema:Periodical
184 sg:person.01025162542.24 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
185 schema:familyName Neumann
186 schema:givenName Heinz
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025162542.24
188 rdf:type schema:Person
189 sg:person.01271466572.65 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
190 schema:familyName Garcia-Alai
191 schema:givenName Maria
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466572.65
193 rdf:type schema:Person
194 sg:person.0577377352.27 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
195 schema:familyName Chin
196 schema:givenName Jason W.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577377352.27
198 rdf:type schema:Person
199 sg:person.0657205457.57 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
200 schema:familyName Davis
201 schema:givenName Lloyd
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657205457.57
203 rdf:type schema:Person
204 sg:person.0661031734.42 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
205 schema:familyName Wang
206 schema:givenName Kaihang
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661031734.42
208 rdf:type schema:Person
209 sg:pub.10.1038/35025116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003337852
210 https://doi.org/10.1038/35025116
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nbt1314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493486
213 https://doi.org/10.1038/nbt1314
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nchembio.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018517323
216 https://doi.org/10.1038/nchembio.73
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nchembio719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820511
219 https://doi.org/10.1038/nchembio719
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrm2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027363158
222 https://doi.org/10.1038/nrm2005
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021109021
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028820752
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1006/jmbi.2001.4518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033941696
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.bbrc.2008.04.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000537236
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.febslet.2005.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053548226
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s0968-0004(02)02064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011855763
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s1074-5521(03)00124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047935731
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s1367-5931(02)00376-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049984
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1021/ja027007w schema:sameAs https://app.dimensions.ai/details/publication/pub.1033544897
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1021/ja900553w schema:sameAs https://app.dimensions.ai/details/publication/pub.1018762543
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/ja971890u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055867897
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.0401517101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019951221
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.0405362101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104503
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.0510817103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037721129
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.172226299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563959
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.96.24.13638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023993534
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1074/jbc.274.50.35601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025893568
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1111/j.1432-1033.1984.tb08491.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044888092
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/j.1432-1033.1987.tb13580.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043684240
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1069588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033064323
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1099191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449725
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.1131127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003901838
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1128/mmbr.00010-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003802960
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1261/rna.294907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037511230
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2174/1568026023394209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069192851
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology
275 schema:name Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...