Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03-18

AUTHORS

Heinz Neumann, Kaihang Wang, Lloyd Davis, Maria Garcia-Alai, Jason W. Chin

ABSTRACT

The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells. More... »

PAGES

441

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08817

DOI

http://dx.doi.org/10.1038/nature08817

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007117586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20154731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alkynes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acyl-tRNA Synthetases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Azides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocatalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calmodulin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Codon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Copper", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Directed Molecular Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Code", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methanococcus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ribosomes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Heinz", 
        "id": "sg:person.01025162542.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025162542.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Kaihang", 
        "id": "sg:person.0661031734.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661031734.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "Lloyd", 
        "id": "sg:person.0657205457.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657205457.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Alai", 
        "givenName": "Maria", 
        "id": "sg:person.01271466572.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466572.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology", 
          "id": "https://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chin", 
        "givenName": "Jason W.", 
        "id": "sg:person.0577377352.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577377352.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bbrc.2008.04.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000537236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35025116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003337852", 
          "https://doi.org/10.1038/35025116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35025116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003337852", 
          "https://doi.org/10.1038/35025116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00010-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003802960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003901838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1367-5931(02)00376-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1367-5931(02)00376-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006049984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(02)02064-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011855763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012493486", 
          "https://doi.org/10.1038/nbt1314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018517323", 
          "https://doi.org/10.1038/nchembio.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja900553w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja900553w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018762543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0401517101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019951221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021109021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.24.13638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023993534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.274.50.35601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025893568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027363158", 
          "https://doi.org/10.1038/nrm2005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027363158", 
          "https://doi.org/10.1038/nrm2005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028820752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033064323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027007w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033544897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027007w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033544897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033941696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.294907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037511230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.172226299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510817103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037721129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820511", 
          "https://doi.org/10.1038/nchembio719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820511", 
          "https://doi.org/10.1038/nchembio719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1987.tb13580.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043684240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1984.tb08491.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044888092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0405362101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(03)00124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047935731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-5521(03)00124-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047935731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053548226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053548226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja971890u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1099191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026023394209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069192851"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03-18", 
    "datePublishedReg": "2010-03-18", 
    "description": "The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08817", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2779818", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2755601", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7287", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "464"
      }
    ], 
    "name": "Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome", 
    "pagination": "441", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21e7caa31c33d96d838a21ed7ab951db859c305fa2f495a7c033884b72eb108e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20154731"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08817"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007117586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08817", 
      "https://app.dimensions.ai/details/publication/pub.1007117586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89790_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08817"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08817'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08817'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      78 URIs      40 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08817 schema:about N0306791fe35441418e836e9c1269cdc7
2 N095542f0f87f4d2dbc5d49375026fdef
3 N0d01e3e596794e639d1b687eae8d8787
4 N0f70ccd0c19b4c2daa64b2637fef31dd
5 N100ddbd48370486a913b01a3585d2801
6 N17b255efe6564b31b828fcb4b8be9b1f
7 N24b4918464b24038b61efd94b14aad13
8 N2ee57fcb94634af8a242f9074554e64e
9 N32ad1494441f43cb876c5ef07a29c227
10 N3c54abdb0e11477283e19da32ee7b4d2
11 N420ff274fd564c80a0a5ac964cec213a
12 N6ce31af6852c4a969295cd495c91fc93
13 N752185bee6d2432ba58b24bed50d5cdd
14 Nba76e300c76c4a7fb33029e3f3e180d3
15 Nd2d54f81ced64b3c991ca35ce617ffd1
16 Nd2e95cef50e9464f9da45ac94adb2370
17 Nd712ae926dda4797bf225f102e387644
18 Ne3cec690645849859336dec4e76b14dc
19 Neb07383d10bc45e69097b7426e0702ed
20 Necba64c64274464dbd514d6ba995e3dc
21 anzsrc-for:06
22 anzsrc-for:0604
23 schema:author N1cfa9de4ddf54016b73a1f98ae6663d5
24 schema:citation sg:pub.10.1038/35025116
25 sg:pub.10.1038/nbt1314
26 sg:pub.10.1038/nchembio.73
27 sg:pub.10.1038/nchembio719
28 sg:pub.10.1038/nrm2005
29 https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5
30 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
31 https://doi.org/10.1006/jmbi.2001.4518
32 https://doi.org/10.1016/j.bbrc.2008.04.164
33 https://doi.org/10.1016/j.febslet.2005.11.010
34 https://doi.org/10.1016/s0968-0004(02)02064-9
35 https://doi.org/10.1016/s1074-5521(03)00124-8
36 https://doi.org/10.1016/s1367-5931(02)00376-9
37 https://doi.org/10.1021/ja027007w
38 https://doi.org/10.1021/ja900553w
39 https://doi.org/10.1021/ja971890u
40 https://doi.org/10.1073/pnas.0401517101
41 https://doi.org/10.1073/pnas.0405362101
42 https://doi.org/10.1073/pnas.0510817103
43 https://doi.org/10.1073/pnas.172226299
44 https://doi.org/10.1073/pnas.96.24.13638
45 https://doi.org/10.1074/jbc.274.50.35601
46 https://doi.org/10.1111/j.1432-1033.1984.tb08491.x
47 https://doi.org/10.1111/j.1432-1033.1987.tb13580.x
48 https://doi.org/10.1126/science.1069588
49 https://doi.org/10.1126/science.1099191
50 https://doi.org/10.1126/science.1131127
51 https://doi.org/10.1128/mmbr.00010-08
52 https://doi.org/10.1261/rna.294907
53 https://doi.org/10.2174/1568026023394209
54 schema:datePublished 2010-03-18
55 schema:datePublishedReg 2010-03-18
56 schema:description The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N52d663fbc3d24d33af5967551fe90b89
61 N6f8da9d5e0fb469ebd82ad8ea3996056
62 sg:journal.1018957
63 schema:name Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
64 schema:pagination 441
65 schema:productId N02414c243bd44364b26596095c2c5b8f
66 N3fbd8df833444adfa5f31be828405fc0
67 N7889c9eedbb9424eaca5becae1ebc0f2
68 Na994e7a7349945d292a6703d6b45263f
69 Nabff25a12500407cb6ab8e031b7d4ea2
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007117586
71 https://doi.org/10.1038/nature08817
72 schema:sdDatePublished 2019-04-11T09:52
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N0d82722a211e426c8e92730ddaceba30
75 schema:url https://www.nature.com/articles/nature08817
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N02414c243bd44364b26596095c2c5b8f schema:name doi
80 schema:value 10.1038/nature08817
81 rdf:type schema:PropertyValue
82 N0306791fe35441418e836e9c1269cdc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Biocatalysis
84 rdf:type schema:DefinedTerm
85 N095542f0f87f4d2dbc5d49375026fdef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Alkynes
87 rdf:type schema:DefinedTerm
88 N0d01e3e596794e639d1b687eae8d8787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Protein Biosynthesis
90 rdf:type schema:DefinedTerm
91 N0d82722a211e426c8e92730ddaceba30 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N0f70ccd0c19b4c2daa64b2637fef31dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name RNA, Messenger
95 rdf:type schema:DefinedTerm
96 N100ddbd48370486a913b01a3585d2801 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cyclization
98 rdf:type schema:DefinedTerm
99 N17b255efe6564b31b828fcb4b8be9b1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Protein Conformation
101 rdf:type schema:DefinedTerm
102 N1cfa9de4ddf54016b73a1f98ae6663d5 rdf:first sg:person.01025162542.24
103 rdf:rest N854a171ff5ea4a1393f48f5e50f520f2
104 N24b4918464b24038b61efd94b14aad13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Molecular
106 rdf:type schema:DefinedTerm
107 N2ee57fcb94634af8a242f9074554e64e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Genetic Engineering
109 rdf:type schema:DefinedTerm
110 N32ad1494441f43cb876c5ef07a29c227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Amino Acyl-tRNA Synthetases
112 rdf:type schema:DefinedTerm
113 N3c54abdb0e11477283e19da32ee7b4d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Methanococcus
115 rdf:type schema:DefinedTerm
116 N3fbd8df833444adfa5f31be828405fc0 schema:name dimensions_id
117 schema:value pub.1007117586
118 rdf:type schema:PropertyValue
119 N420ff274fd564c80a0a5ac964cec213a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Calmodulin
121 rdf:type schema:DefinedTerm
122 N52d663fbc3d24d33af5967551fe90b89 schema:issueNumber 7287
123 rdf:type schema:PublicationIssue
124 N6ce31af6852c4a969295cd495c91fc93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Azides
126 rdf:type schema:DefinedTerm
127 N6f8da9d5e0fb469ebd82ad8ea3996056 schema:volumeNumber 464
128 rdf:type schema:PublicationVolume
129 N752185bee6d2432ba58b24bed50d5cdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Directed Molecular Evolution
131 rdf:type schema:DefinedTerm
132 N7843b3c2eecd4547a69dbce47730510b rdf:first sg:person.0657205457.57
133 rdf:rest Nce25bf64b0da4528bfb400cad4b40b8e
134 N7889c9eedbb9424eaca5becae1ebc0f2 schema:name pubmed_id
135 schema:value 20154731
136 rdf:type schema:PropertyValue
137 N84b43af675b1412f9e3fd6a83fe3cc80 rdf:first sg:person.0577377352.27
138 rdf:rest rdf:nil
139 N854a171ff5ea4a1393f48f5e50f520f2 rdf:first sg:person.0661031734.42
140 rdf:rest N7843b3c2eecd4547a69dbce47730510b
141 Na994e7a7349945d292a6703d6b45263f schema:name readcube_id
142 schema:value 21e7caa31c33d96d838a21ed7ab951db859c305fa2f495a7c033884b72eb108e
143 rdf:type schema:PropertyValue
144 Nabff25a12500407cb6ab8e031b7d4ea2 schema:name nlm_unique_id
145 schema:value 0410462
146 rdf:type schema:PropertyValue
147 Nba76e300c76c4a7fb33029e3f3e180d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Ribosomes
149 rdf:type schema:DefinedTerm
150 Nce25bf64b0da4528bfb400cad4b40b8e rdf:first sg:person.01271466572.65
151 rdf:rest N84b43af675b1412f9e3fd6a83fe3cc80
152 Nd2d54f81ced64b3c991ca35ce617ffd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Amino Acids
154 rdf:type schema:DefinedTerm
155 Nd2e95cef50e9464f9da45ac94adb2370 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Copper
157 rdf:type schema:DefinedTerm
158 Nd712ae926dda4797bf225f102e387644 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name RNA, Transfer
160 rdf:type schema:DefinedTerm
161 Ne3cec690645849859336dec4e76b14dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Genetic Code
163 rdf:type schema:DefinedTerm
164 Neb07383d10bc45e69097b7426e0702ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Codon
166 rdf:type schema:DefinedTerm
167 Necba64c64274464dbd514d6ba995e3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Protein Engineering
169 rdf:type schema:DefinedTerm
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
174 schema:name Genetics
175 rdf:type schema:DefinedTerm
176 sg:grant.2755601 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08817
177 rdf:type schema:MonetaryGrant
178 sg:grant.2779818 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08817
179 rdf:type schema:MonetaryGrant
180 sg:journal.1018957 schema:issn 0090-0028
181 1476-4687
182 schema:name Nature
183 rdf:type schema:Periodical
184 sg:person.01025162542.24 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
185 schema:familyName Neumann
186 schema:givenName Heinz
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025162542.24
188 rdf:type schema:Person
189 sg:person.01271466572.65 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
190 schema:familyName Garcia-Alai
191 schema:givenName Maria
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271466572.65
193 rdf:type schema:Person
194 sg:person.0577377352.27 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
195 schema:familyName Chin
196 schema:givenName Jason W.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577377352.27
198 rdf:type schema:Person
199 sg:person.0657205457.57 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
200 schema:familyName Davis
201 schema:givenName Lloyd
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657205457.57
203 rdf:type schema:Person
204 sg:person.0661031734.42 schema:affiliation https://www.grid.ac/institutes/grid.42475.30
205 schema:familyName Wang
206 schema:givenName Kaihang
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661031734.42
208 rdf:type schema:Person
209 sg:pub.10.1038/35025116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003337852
210 https://doi.org/10.1038/35025116
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nbt1314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493486
213 https://doi.org/10.1038/nbt1314
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nchembio.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018517323
216 https://doi.org/10.1038/nchembio.73
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nchembio719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820511
219 https://doi.org/10.1038/nchembio719
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrm2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027363158
222 https://doi.org/10.1038/nrm2005
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/(sici)1521-3773(19980216)37:3<347::aid-anie347>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021109021
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028820752
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1006/jmbi.2001.4518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033941696
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.bbrc.2008.04.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000537236
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.febslet.2005.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053548226
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/s0968-0004(02)02064-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011855763
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s1074-5521(03)00124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047935731
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s1367-5931(02)00376-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006049984
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1021/ja027007w schema:sameAs https://app.dimensions.ai/details/publication/pub.1033544897
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1021/ja900553w schema:sameAs https://app.dimensions.ai/details/publication/pub.1018762543
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1021/ja971890u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055867897
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.0401517101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019951221
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1073/pnas.0405362101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104503
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1073/pnas.0510817103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037721129
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1073/pnas.172226299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563959
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.96.24.13638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023993534
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1074/jbc.274.50.35601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025893568
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1111/j.1432-1033.1984.tb08491.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044888092
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/j.1432-1033.1987.tb13580.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043684240
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1069588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033064323
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1099191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449725
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.1131127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003901838
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1128/mmbr.00010-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003802960
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1261/rna.294907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037511230
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2174/1568026023394209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069192851
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology
275 schema:name Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...