Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Amir Haji-Akbari, Michael Engel, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palffy-Muhoray, Sharon C. Glotzer

ABSTRACT

All hard, convex shapes are conjectured by Ulam to pack more densely than spheres, which have a maximum packing fraction of phi = pi/ radical18 approximately 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction. For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with phi = 0.7786 (ref. 4), which was subsequently compressed numerically to phi = 0.7820 (ref. 5), while compressing with different initial conditions led to phi = 0.8230 (ref. 6). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal, which can be compressed to a packing fraction of phi = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is phi = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to phi = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures. More... »

PAGES

773

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08641

DOI

http://dx.doi.org/10.1038/nature08641

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033234192

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20010683


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Chemical Engineering,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haji-Akbari", 
        "givenName": "Amir", 
        "id": "sg:person.01114265522.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114265522.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemical Engineering,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engel", 
        "givenName": "Michael", 
        "id": "sg:person.01113116376.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113116376.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemical Engineering,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keys", 
        "givenName": "Aaron S.", 
        "id": "sg:person.01044665747.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044665747.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.466112.6", 
          "name": [
            "Department of Mathematical Sciences,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.0704153076.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704153076.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petschek", 
        "givenName": "Rolfe G.", 
        "id": "sg:person.01267557154.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267557154.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kent State University", 
          "id": "https://www.grid.ac/institutes/grid.258518.3", 
          "name": [
            "Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palffy-Muhoray", 
        "givenName": "Peter", 
        "id": "sg:person.01135130534.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135130534.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Chemical Engineering,", 
            "Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotzer", 
        "givenName": "Sharon C.", 
        "id": "sg:person.01261477547.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261477547.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000401656", 
          "https://doi.org/10.1038/nature02368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000401656", 
          "https://doi.org/10.1038/nature02368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767396000967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007618535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767304019269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009656298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013073750", 
          "https://doi.org/10.1038/nmat1949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.255506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014451212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.255506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014451212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.235503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014464456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.235503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014464456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.225505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017214825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.225505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017214825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020729553", 
          "https://doi.org/10.1038/nature08439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020729553", 
          "https://doi.org/10.1038/nature08439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-010-9254-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023873892", 
          "https://doi.org/10.1007/s00454-010-9254-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-010-9254-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023873892", 
          "https://doi.org/10.1007/s00454-010-9254-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-010-9254-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023873892", 
          "https://doi.org/10.1007/s00454-010-9254-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1949.tb27296.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024122429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024128306", 
          "https://doi.org/10.1038/nature08239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024128306", 
          "https://doi.org/10.1038/nature08239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268979500100281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026532732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026534803", 
          "https://doi.org/10.1038/nature07074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-008-9101-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032796717", 
          "https://doi.org/10.1007/s00454-008-9101-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-008-9101-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032796717", 
          "https://doi.org/10.1007/s00454-008-9101-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-008-9101-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032796717", 
          "https://doi.org/10.1007/s00454-008-9101-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.6845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034448127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.6845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034448127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601389103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039227641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-005-1210-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042529815", 
          "https://doi.org/10.1007/s00454-005-1210-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00454-005-1210-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042529815", 
          "https://doi.org/10.1007/s00454-005-1210-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(00)00007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047079203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048114843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.041104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048114843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0365110x58000487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053688883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2819091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057874927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.473404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.473665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058055223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.5632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.5632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.6966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.6966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.52.702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060718803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.195502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1128045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2005.162.1065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866924"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "All hard, convex shapes are conjectured by Ulam to pack more densely than spheres, which have a maximum packing fraction of phi = pi/ radical18 approximately 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction. For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with phi = 0.7786 (ref. 4), which was subsequently compressed numerically to phi = 0.7820 (ref. 5), while compressing with different initial conditions led to phi = 0.8230 (ref. 6). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal, which can be compressed to a packing fraction of phi = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is phi = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to phi = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08641", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7274", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "462"
      }
    ], 
    "name": "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra", 
    "pagination": "773", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e5262dec397877def3ec2156de19e6aed683f75409bb931ef643656ba07aa9d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20010683"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08641"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033234192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08641", 
      "https://app.dimensions.ai/details/publication/pub.1033234192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08641"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08641'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08641'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08641'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08641'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08641 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7fff13d238074920ae9df67f34825c3c
4 schema:citation sg:pub.10.1007/s00454-005-1210-2
5 sg:pub.10.1007/s00454-008-9101-y
6 sg:pub.10.1007/s00454-010-9254-3
7 sg:pub.10.1038/nature02368
8 sg:pub.10.1038/nature07074
9 sg:pub.10.1038/nature08239
10 sg:pub.10.1038/nature08439
11 sg:pub.10.1038/nmat1949
12 https://doi.org/10.1016/s0925-7721(00)00007-9
13 https://doi.org/10.1063/1.2819091
14 https://doi.org/10.1063/1.473404
15 https://doi.org/10.1063/1.473665
16 https://doi.org/10.1073/pnas.0601389103
17 https://doi.org/10.1080/00268979500100281
18 https://doi.org/10.1103/physreva.45.5632
19 https://doi.org/10.1103/physrevb.48.6966
20 https://doi.org/10.1103/physreve.52.702
21 https://doi.org/10.1103/physreve.61.6845
22 https://doi.org/10.1103/physreve.80.041104
23 https://doi.org/10.1103/physrevlett.92.255506
24 https://doi.org/10.1103/physrevlett.98.195502
25 https://doi.org/10.1103/physrevlett.98.225505
26 https://doi.org/10.1103/physrevlett.99.235503
27 https://doi.org/10.1107/s0108767304019269
28 https://doi.org/10.1107/s0108767396000967
29 https://doi.org/10.1107/s0365110x58000487
30 https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
31 https://doi.org/10.1126/science.1128045
32 https://doi.org/10.4007/annals.2005.162.1065
33 schema:datePublished 2009-12
34 schema:datePublishedReg 2009-12-01
35 schema:description All hard, convex shapes are conjectured by Ulam to pack more densely than spheres, which have a maximum packing fraction of phi = pi/ radical18 approximately 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction. For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with phi = 0.7786 (ref. 4), which was subsequently compressed numerically to phi = 0.7820 (ref. 5), while compressing with different initial conditions led to phi = 0.8230 (ref. 6). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal, which can be compressed to a packing fraction of phi = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is phi = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to phi = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N3c58113ee454437d872dc669bf975c3e
40 N592b67544afa4668bca018c2fbff844f
41 sg:journal.1018957
42 schema:name Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra
43 schema:pagination 773
44 schema:productId N0c6bc6ac5c444e97ad05fe5b4a014c60
45 N330eadaec72a4daa8057b94f8027e770
46 N738b46e010494686b525251c07703ef8
47 N9acd1e2d7dea42b8b0ca26cf3cf3440e
48 Nd41b40d23a9248b48fd321eef8d24d8c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033234192
50 https://doi.org/10.1038/nature08641
51 schema:sdDatePublished 2019-04-11T09:30
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N88be307c1e4443bd8d7a1546b5d7bf53
54 schema:url https://www.nature.com/articles/nature08641
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N08a64a04b5f34890aa485604467d30a3 rdf:first sg:person.01113116376.03
59 rdf:rest Ncf668274fed34431b99de0cc3a91d6ae
60 N0c6bc6ac5c444e97ad05fe5b4a014c60 schema:name doi
61 schema:value 10.1038/nature08641
62 rdf:type schema:PropertyValue
63 N113160ccae3742bb8961313d8cde1b47 schema:name Department of Chemical Engineering,
64 rdf:type schema:Organization
65 N29f31f77f1404265a0a1de1d31c02e73 rdf:first sg:person.01261477547.48
66 rdf:rest rdf:nil
67 N330eadaec72a4daa8057b94f8027e770 schema:name pubmed_id
68 schema:value 20010683
69 rdf:type schema:PropertyValue
70 N3c58113ee454437d872dc669bf975c3e schema:issueNumber 7274
71 rdf:type schema:PublicationIssue
72 N4027e511af58489a91c8949bc3eb9a1a schema:name Department of Chemical Engineering,
73 rdf:type schema:Organization
74 N592b67544afa4668bca018c2fbff844f schema:volumeNumber 462
75 rdf:type schema:PublicationVolume
76 N69f3f44b9a364833b053436ff163474b rdf:first sg:person.01267557154.54
77 rdf:rest Na014d2b6531842fd90cfe82dc197bf98
78 N738b46e010494686b525251c07703ef8 schema:name nlm_unique_id
79 schema:value 0410462
80 rdf:type schema:PropertyValue
81 N7cee9f12139148028a2befb7b9029723 rdf:first sg:person.0704153076.35
82 rdf:rest N69f3f44b9a364833b053436ff163474b
83 N7fff13d238074920ae9df67f34825c3c rdf:first sg:person.01114265522.69
84 rdf:rest N08a64a04b5f34890aa485604467d30a3
85 N88be307c1e4443bd8d7a1546b5d7bf53 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N9acd1e2d7dea42b8b0ca26cf3cf3440e schema:name dimensions_id
88 schema:value pub.1033234192
89 rdf:type schema:PropertyValue
90 Na014d2b6531842fd90cfe82dc197bf98 rdf:first sg:person.01135130534.33
91 rdf:rest N29f31f77f1404265a0a1de1d31c02e73
92 Nabd3fbdf7e964f7b900cb15f0765d148 schema:name Department of Chemical Engineering,
93 rdf:type schema:Organization
94 Ncf668274fed34431b99de0cc3a91d6ae rdf:first sg:person.01044665747.91
95 rdf:rest N7cee9f12139148028a2befb7b9029723
96 Nd41b40d23a9248b48fd321eef8d24d8c schema:name readcube_id
97 schema:value 9e5262dec397877def3ec2156de19e6aed683f75409bb931ef643656ba07aa9d
98 rdf:type schema:PropertyValue
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
103 schema:name Pure Mathematics
104 rdf:type schema:DefinedTerm
105 sg:journal.1018957 schema:issn 0090-0028
106 1476-4687
107 schema:name Nature
108 rdf:type schema:Periodical
109 sg:person.01044665747.91 schema:affiliation Nabd3fbdf7e964f7b900cb15f0765d148
110 schema:familyName Keys
111 schema:givenName Aaron S.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044665747.91
113 rdf:type schema:Person
114 sg:person.01113116376.03 schema:affiliation N113160ccae3742bb8961313d8cde1b47
115 schema:familyName Engel
116 schema:givenName Michael
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113116376.03
118 rdf:type schema:Person
119 sg:person.01114265522.69 schema:affiliation N4027e511af58489a91c8949bc3eb9a1a
120 schema:familyName Haji-Akbari
121 schema:givenName Amir
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114265522.69
123 rdf:type schema:Person
124 sg:person.01135130534.33 schema:affiliation https://www.grid.ac/institutes/grid.258518.3
125 schema:familyName Palffy-Muhoray
126 schema:givenName Peter
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135130534.33
128 rdf:type schema:Person
129 sg:person.01261477547.48 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
130 schema:familyName Glotzer
131 schema:givenName Sharon C.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261477547.48
133 rdf:type schema:Person
134 sg:person.01267557154.54 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
135 schema:familyName Petschek
136 schema:givenName Rolfe G.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267557154.54
138 rdf:type schema:Person
139 sg:person.0704153076.35 schema:affiliation https://www.grid.ac/institutes/grid.466112.6
140 schema:familyName Zheng
141 schema:givenName Xiaoyu
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704153076.35
143 rdf:type schema:Person
144 sg:pub.10.1007/s00454-005-1210-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042529815
145 https://doi.org/10.1007/s00454-005-1210-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00454-008-9101-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032796717
148 https://doi.org/10.1007/s00454-008-9101-y
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00454-010-9254-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023873892
151 https://doi.org/10.1007/s00454-010-9254-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature02368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000401656
154 https://doi.org/10.1038/nature02368
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature07074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026534803
157 https://doi.org/10.1038/nature07074
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature08239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024128306
160 https://doi.org/10.1038/nature08239
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature08439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020729553
163 https://doi.org/10.1038/nature08439
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmat1949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013073750
166 https://doi.org/10.1038/nmat1949
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0925-7721(00)00007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047079203
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2819091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057874927
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.473404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054818
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.473665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058055223
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.0601389103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039227641
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/00268979500100281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026532732
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreva.45.5632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485289
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.48.6966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568980
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.52.702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060718803
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.61.6845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034448127
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.80.041104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048114843
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.92.255506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014451212
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.98.195502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834014
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.98.225505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017214825
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.99.235503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014464456
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1107/s0108767304019269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009656298
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1107/s0108767396000967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007618535
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1107/s0365110x58000487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053688883
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1749-6632.1949.tb27296.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024122429
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1128045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453828
207 rdf:type schema:CreativeWork
208 https://doi.org/10.4007/annals.2005.162.1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866924
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
211 schema:name Department of Chemical Engineering,
212 Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.258518.3 schema:alternateName Kent State University
215 schema:name Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.466112.6 schema:alternateName Department of Mathematical Sciences
218 schema:name Department of Mathematical Sciences,
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
221 schema:name Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...