Plasmon lasers at deep subwavelength scale View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-10

AUTHORS

Rupert F. Oulton, Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladden, Lun Dai, Guy Bartal, Xiang Zhang

ABSTRACT

Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals, metal-clad cavities and nanowires. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit. A way of addressing this issue is to make use of surface plasmons, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire's exciton spontaneous emission rate by up to six times owing to the strong mode confinement and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits, bio-sensing and quantum information technology. More... »

PAGES

629

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08364

DOI

http://dx.doi.org/10.1038/nature08364

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002908419

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19718019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oulton", 
        "givenName": "Rupert F.", 
        "id": "sg:person.0641403773.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641403773.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorger", 
        "givenName": "Volker J.", 
        "id": "sg:person.01113245304.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113245304.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zentgraf", 
        "givenName": "Thomas", 
        "id": "sg:person.016315652355.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315652355.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Ren-Min", 
        "id": "sg:person.0730703504.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730703504.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gladden", 
        "givenName": "Christopher", 
        "id": "sg:person.01200263304.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200263304.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Lun", 
        "id": "sg:person.01163032605.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163032605.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartal", 
        "givenName": "Guy", 
        "id": "sg:person.01145447505.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145447505.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiang", 
        "id": "sg:person.01005467612.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005467612.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007245986", 
          "https://doi.org/10.1038/nmat2162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.226806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.226806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170945", 
          "https://doi.org/10.1038/nphoton.2008.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016675487", 
          "https://doi.org/10.1038/nphys343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016675487", 
          "https://doi.org/10.1038/nphys343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.027402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016855344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.027402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016855344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017447836", 
          "https://doi.org/10.1038/nmat728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017447836", 
          "https://doi.org/10.1038/nmat728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018162060", 
          "https://doi.org/10.1038/nature06141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020420660", 
          "https://doi.org/10.1038/nphoton.2008.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.99.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023588467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.99.1264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023588467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489920", 
          "https://doi.org/10.1038/nature01353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489920", 
          "https://doi.org/10.1038/nature01353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025322991", 
          "https://doi.org/10.1038/nmat852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025322991", 
          "https://doi.org/10.1038/nmat852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/10/105018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027234847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028344737", 
          "https://doi.org/10.1038/nphoton.2007.171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029211731", 
          "https://doi.org/10.1038/nature06230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2710004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031816993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.200810030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032317461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90098-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90098-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033183262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01312825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044482640", 
          "https://doi.org/10.1007/bf01312825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01312825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044482640", 
          "https://doi.org/10.1007/bf01312825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053588908", 
          "https://doi.org/10.1038/nature04594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053588908", 
          "https://doi.org/10.1038/nature04594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053588908", 
          "https://doi.org/10.1038/nature04594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802603r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802603r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1991990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057834645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2965797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057888058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.321311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057919254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.128.2135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.128.2135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.137404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.137404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.153901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.153901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.100877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444429"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals, metal-clad cavities and nanowires. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit. A way of addressing this issue is to make use of surface plasmons, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire's exciton spontaneous emission rate by up to six times owing to the strong mode confinement and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits, bio-sensing and quantum information technology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08364", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3085835", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4953425", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4955267", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7264", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "461"
      }
    ], 
    "name": "Plasmon lasers at deep subwavelength scale", 
    "pagination": "629", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dda3f3a88a50593f69b7ac75c0946cb4bfbfd1d3d80a659dae3e54ddfad1780"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19718019"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08364"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002908419"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08364", 
      "https://app.dimensions.ai/details/publication/pub.1002908419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08364"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08364'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08364'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08364'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08364'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08364 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N078c8e9fed4f42e3b0dc5cecb0ddd9f4
4 schema:citation sg:pub.10.1007/bf01312825
5 sg:pub.10.1038/nature01353
6 sg:pub.10.1038/nature04594
7 sg:pub.10.1038/nature06141
8 sg:pub.10.1038/nature06230
9 sg:pub.10.1038/nmat2162
10 sg:pub.10.1038/nmat728
11 sg:pub.10.1038/nmat852
12 sg:pub.10.1038/nphoton.2007.171
13 sg:pub.10.1038/nphoton.2008.131
14 sg:pub.10.1038/nphoton.2008.82
15 sg:pub.10.1038/nphys343
16 https://doi.org/10.1002/lpor.200810030
17 https://doi.org/10.1016/0370-1573(84)90098-x
18 https://doi.org/10.1021/nl802603r
19 https://doi.org/10.1063/1.1991990
20 https://doi.org/10.1063/1.2710004
21 https://doi.org/10.1063/1.2965797
22 https://doi.org/10.1063/1.321311
23 https://doi.org/10.1088/1367-2630/10/10/105018
24 https://doi.org/10.1103/physrev.128.2135
25 https://doi.org/10.1103/physrev.69.37
26 https://doi.org/10.1103/physrev.99.1264
27 https://doi.org/10.1103/physrevlett.101.226806
28 https://doi.org/10.1103/physrevlett.90.027402
29 https://doi.org/10.1103/physrevlett.93.137404
30 https://doi.org/10.1103/physrevlett.99.153901
31 https://doi.org/10.1109/3.100877
32 https://doi.org/10.1126/science.1058561
33 schema:datePublished 2009-10
34 schema:datePublishedReg 2009-10-01
35 schema:description Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals, metal-clad cavities and nanowires. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit. A way of addressing this issue is to make use of surface plasmons, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire's exciton spontaneous emission rate by up to six times owing to the strong mode confinement and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits, bio-sensing and quantum information technology.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N10ce5d715f224986aabb0e9a49312e1b
40 N1f2310ff066f4678922dab6ccfd17629
41 sg:journal.1018957
42 schema:name Plasmon lasers at deep subwavelength scale
43 schema:pagination 629
44 schema:productId N26f7ea220dee40a6870a427332165c3a
45 N98387795da5b406facc1eb391086adde
46 N9e72dae03c4d4bd4b6cd72c9738fa30c
47 Nb4fb4ca24dee42e59733988a7a48753b
48 Nc197999c9902420093ede9a21fdd71b7
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002908419
50 https://doi.org/10.1038/nature08364
51 schema:sdDatePublished 2019-04-10T16:28
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nf86579b0b1464de492378fb0a3eb7451
54 schema:url https://www.nature.com/articles/nature08364
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N060fffbbc4824bf29ae83911b352703e rdf:first sg:person.01113245304.45
59 rdf:rest N339a8550c9fc4c799c0e2538b82a91a9
60 N078c8e9fed4f42e3b0dc5cecb0ddd9f4 rdf:first sg:person.0641403773.67
61 rdf:rest N060fffbbc4824bf29ae83911b352703e
62 N10ce5d715f224986aabb0e9a49312e1b schema:volumeNumber 461
63 rdf:type schema:PublicationVolume
64 N1f2310ff066f4678922dab6ccfd17629 schema:issueNumber 7264
65 rdf:type schema:PublicationIssue
66 N26f7ea220dee40a6870a427332165c3a schema:name pubmed_id
67 schema:value 19718019
68 rdf:type schema:PropertyValue
69 N2d6774113f8340f69fab3b32a84f291e rdf:first sg:person.01163032605.04
70 rdf:rest N3dcbbd98a86546ceb57a489181a04116
71 N339a8550c9fc4c799c0e2538b82a91a9 rdf:first sg:person.016315652355.75
72 rdf:rest N6be054c9a0fe43f48e2058a447fd4431
73 N3dcbbd98a86546ceb57a489181a04116 rdf:first sg:person.01145447505.90
74 rdf:rest Nf8e0f900904f401eaab2eac47bf5d496
75 N6be054c9a0fe43f48e2058a447fd4431 rdf:first sg:person.0730703504.80
76 rdf:rest Nb550919d482a4905beeed24b7b2e412d
77 N98387795da5b406facc1eb391086adde schema:name doi
78 schema:value 10.1038/nature08364
79 rdf:type schema:PropertyValue
80 N9e72dae03c4d4bd4b6cd72c9738fa30c schema:name readcube_id
81 schema:value 0dda3f3a88a50593f69b7ac75c0946cb4bfbfd1d3d80a659dae3e54ddfad1780
82 rdf:type schema:PropertyValue
83 Nb4fb4ca24dee42e59733988a7a48753b schema:name dimensions_id
84 schema:value pub.1002908419
85 rdf:type schema:PropertyValue
86 Nb550919d482a4905beeed24b7b2e412d rdf:first sg:person.01200263304.28
87 rdf:rest N2d6774113f8340f69fab3b32a84f291e
88 Nc197999c9902420093ede9a21fdd71b7 schema:name nlm_unique_id
89 schema:value 0410462
90 rdf:type schema:PropertyValue
91 Nf86579b0b1464de492378fb0a3eb7451 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nf8e0f900904f401eaab2eac47bf5d496 rdf:first sg:person.01005467612.83
94 rdf:rest rdf:nil
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
99 schema:name Optical Physics
100 rdf:type schema:DefinedTerm
101 sg:grant.3085835 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08364
102 rdf:type schema:MonetaryGrant
103 sg:grant.4953425 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08364
104 rdf:type schema:MonetaryGrant
105 sg:grant.4955267 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08364
106 rdf:type schema:MonetaryGrant
107 sg:journal.1018957 schema:issn 0090-0028
108 1476-4687
109 schema:name Nature
110 rdf:type schema:Periodical
111 sg:person.01005467612.83 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
112 schema:familyName Zhang
113 schema:givenName Xiang
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005467612.83
115 rdf:type schema:Person
116 sg:person.01113245304.45 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
117 schema:familyName Sorger
118 schema:givenName Volker J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113245304.45
120 rdf:type schema:Person
121 sg:person.01145447505.90 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
122 schema:familyName Bartal
123 schema:givenName Guy
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145447505.90
125 rdf:type schema:Person
126 sg:person.01163032605.04 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
127 schema:familyName Dai
128 schema:givenName Lun
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163032605.04
130 rdf:type schema:Person
131 sg:person.01200263304.28 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
132 schema:familyName Gladden
133 schema:givenName Christopher
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200263304.28
135 rdf:type schema:Person
136 sg:person.016315652355.75 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
137 schema:familyName Zentgraf
138 schema:givenName Thomas
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016315652355.75
140 rdf:type schema:Person
141 sg:person.0641403773.67 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
142 schema:familyName Oulton
143 schema:givenName Rupert F.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641403773.67
145 rdf:type schema:Person
146 sg:person.0730703504.80 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
147 schema:familyName Ma
148 schema:givenName Ren-Min
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730703504.80
150 rdf:type schema:Person
151 sg:pub.10.1007/bf01312825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044482640
152 https://doi.org/10.1007/bf01312825
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature01353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024489920
155 https://doi.org/10.1038/nature01353
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature04594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053588908
158 https://doi.org/10.1038/nature04594
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature06141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018162060
161 https://doi.org/10.1038/nature06141
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature06230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029211731
164 https://doi.org/10.1038/nature06230
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nmat2162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007245986
167 https://doi.org/10.1038/nmat2162
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nmat728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017447836
170 https://doi.org/10.1038/nmat728
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nmat852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025322991
173 https://doi.org/10.1038/nmat852
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphoton.2007.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028344737
176 https://doi.org/10.1038/nphoton.2007.171
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nphoton.2008.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020420660
179 https://doi.org/10.1038/nphoton.2008.131
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nphoton.2008.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170945
182 https://doi.org/10.1038/nphoton.2008.82
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nphys343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016675487
185 https://doi.org/10.1038/nphys343
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/lpor.200810030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032317461
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0370-1573(84)90098-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033183262
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nl802603r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221557
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.1991990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057834645
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.2710004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031816993
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.2965797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888058
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.321311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057919254
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/1367-2630/10/10/105018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027234847
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrev.128.2135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060426061
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrev.69.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823134
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrev.99.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023588467
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.101.226806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012458268
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.90.027402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016855344
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.93.137404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829063
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.99.153901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834701
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/3.100877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146398
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.1058561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444429
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
222 schema:name State Key Lab for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
225 schema:name Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
226 NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
229 schema:name NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...