Demonstration of a spaser-based nanolaser View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner

ABSTRACT

One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications. More... »

PAGES

1110

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08318

DOI

http://dx.doi.org/10.1038/nature08318

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014287162

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19684572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norfolk State University", 
          "id": "https://www.grid.ac/institutes/grid.261024.3", 
          "name": [
            "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noginov", 
        "givenName": "M. A.", 
        "id": "sg:person.01225053603.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225053603.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norfolk State University", 
          "id": "https://www.grid.ac/institutes/grid.261024.3", 
          "name": [
            "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "G.", 
        "id": "sg:person.011721150133.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721150133.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norfolk State University", 
          "id": "https://www.grid.ac/institutes/grid.261024.3", 
          "name": [
            "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belgrave", 
        "givenName": "A. M.", 
        "id": "sg:person.01354467334.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467334.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakker", 
        "givenName": "R.", 
        "id": "sg:person.0661555412.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661555412.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shalaev", 
        "givenName": "V. M.", 
        "id": "sg:person.0744776455.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776455.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narimanov", 
        "givenName": "E. E.", 
        "id": "sg:person.01372510022.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510022.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA", 
            "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stout", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herz", 
        "givenName": "E.", 
        "id": "sg:person.01205752041.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205752041.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suteewong", 
        "givenName": "T.", 
        "id": "sg:person.0621207034.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621207034.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiesner", 
        "givenName": "U.", 
        "id": "sg:person.01113523250.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113523250.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/oe.15.002622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007850296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2401-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408362", 
          "https://doi.org/10.1007/s00340-006-2401-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2401-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408362", 
          "https://doi.org/10.1007/s00340-006-2401-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.001385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011394325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.226806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.226806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012458268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0482478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013082571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0482478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013082571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.82", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014170945", 
          "https://doi.org/10.1038/nphoton.2008.82"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.027402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016855344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.027402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016855344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017283404", 
          "https://doi.org/10.1038/nphoton.2007.182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340408231813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017688435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017750281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.69.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022823134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028344737", 
          "https://doi.org/10.1038/nphoton.2007.171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.12.004072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040662706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b000136h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053134976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062518g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056066352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062518g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056066352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1825058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057824945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1894590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057830861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2364857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057853086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.177401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.17.001329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.001366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.003022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08318", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3068000", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3031799", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7259", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "460"
      }
    ], 
    "name": "Demonstration of a spaser-based nanolaser", 
    "pagination": "1110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44102b1fdb224f158f85e1de871442e9b11bfe3b6aed0a47986be16048897cb3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19684572"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08318"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014287162"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08318", 
      "https://app.dimensions.ai/details/publication/pub.1014287162"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64100_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08318"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08318'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08318 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Nda1e92ede1124ed1b6b3f35c4365096e
4 schema:citation sg:pub.10.1007/s00340-006-2401-0
5 sg:pub.10.1038/nphoton.2007.171
6 sg:pub.10.1038/nphoton.2007.182
7 sg:pub.10.1038/nphoton.2008.82
8 https://doi.org/10.1017/cbo9781139644181
9 https://doi.org/10.1021/jp062518g
10 https://doi.org/10.1021/nl0482478
11 https://doi.org/10.1039/b000136h
12 https://doi.org/10.1063/1.1825058
13 https://doi.org/10.1063/1.1894590
14 https://doi.org/10.1063/1.2364857
15 https://doi.org/10.1080/09500340408231813
16 https://doi.org/10.1103/physrev.69.37
17 https://doi.org/10.1103/physrevb.6.4370
18 https://doi.org/10.1103/physrevlett.101.226806
19 https://doi.org/10.1103/physrevlett.90.027402
20 https://doi.org/10.1103/physrevlett.94.177401
21 https://doi.org/10.1126/science.1111886
22 https://doi.org/10.1126/science.1131322
23 https://doi.org/10.1364/josab.17.001329
24 https://doi.org/10.1364/oe.15.002622
25 https://doi.org/10.1364/oe.16.001385
26 https://doi.org/10.1364/ol.23.001366
27 https://doi.org/10.1364/ol.31.003022
28 https://doi.org/10.1364/opex.12.004072
29 schema:datePublished 2009-08
30 schema:datePublishedReg 2009-08-01
31 schema:description One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N4b59f559014d4dc3aaf99bea6df1379e
36 N95386d7f31c64f15821db557abda9450
37 sg:journal.1018957
38 schema:name Demonstration of a spaser-based nanolaser
39 schema:pagination 1110
40 schema:productId N02eaa86cded940d9b64d6d05c58444a2
41 N297ea883046c48b98dd8a0b3c994ce5f
42 N8081f586fd284f6e9290ddcb78e50ecc
43 N89f8f20e7b81421b803c13020fa0d1be
44 Nb81d54604c604611a1cbe64735f65377
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287162
46 https://doi.org/10.1038/nature08318
47 schema:sdDatePublished 2019-04-11T09:24
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N10c97762aba14f47a4460743041f0520
50 schema:url https://www.nature.com/articles/nature08318
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N02eaa86cded940d9b64d6d05c58444a2 schema:name readcube_id
55 schema:value 44102b1fdb224f158f85e1de871442e9b11bfe3b6aed0a47986be16048897cb3
56 rdf:type schema:PropertyValue
57 N0ad3ca628f0a4b57a2ef3b753671654b rdf:first sg:person.01354467334.69
58 rdf:rest N5ba75e54e1dd40bc9203a5e3d99f2809
59 N10c97762aba14f47a4460743041f0520 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N297ea883046c48b98dd8a0b3c994ce5f schema:name doi
62 schema:value 10.1038/nature08318
63 rdf:type schema:PropertyValue
64 N412c6beb6d12442a83610426250b6f31 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
65 schema:familyName Stout
66 schema:givenName S.
67 rdf:type schema:Person
68 N4b59f559014d4dc3aaf99bea6df1379e schema:volumeNumber 460
69 rdf:type schema:PublicationVolume
70 N5ba75e54e1dd40bc9203a5e3d99f2809 rdf:first sg:person.0661555412.41
71 rdf:rest N8a34ab31a8934c0f831b8902de64c3fb
72 N786b3fb33b6a4e648be3f43c142ca4aa rdf:first sg:person.01113523250.02
73 rdf:rest rdf:nil
74 N8081f586fd284f6e9290ddcb78e50ecc schema:name nlm_unique_id
75 schema:value 0410462
76 rdf:type schema:PropertyValue
77 N89f8f20e7b81421b803c13020fa0d1be schema:name pubmed_id
78 schema:value 19684572
79 rdf:type schema:PropertyValue
80 N8a34ab31a8934c0f831b8902de64c3fb rdf:first sg:person.0744776455.55
81 rdf:rest Nc99f0e66eca040488165f5561853872c
82 N95386d7f31c64f15821db557abda9450 schema:issueNumber 7259
83 rdf:type schema:PublicationIssue
84 Nb7b2786b85e849cdaae66a565b671196 rdf:first sg:person.0621207034.28
85 rdf:rest N786b3fb33b6a4e648be3f43c142ca4aa
86 Nb81d54604c604611a1cbe64735f65377 schema:name dimensions_id
87 schema:value pub.1014287162
88 rdf:type schema:PropertyValue
89 Nc99f0e66eca040488165f5561853872c rdf:first sg:person.01372510022.30
90 rdf:rest Nf80faa2ee89a47f0920aac0569cb9c06
91 Nd24d77c8f5c443bd99dea7d574515a0e rdf:first sg:person.011721150133.80
92 rdf:rest N0ad3ca628f0a4b57a2ef3b753671654b
93 Nda1e92ede1124ed1b6b3f35c4365096e rdf:first sg:person.01225053603.20
94 rdf:rest Nd24d77c8f5c443bd99dea7d574515a0e
95 Nefafbfbfa6104f21aa9338ee27777b7f rdf:first sg:person.01205752041.48
96 rdf:rest Nb7b2786b85e849cdaae66a565b671196
97 Nf80faa2ee89a47f0920aac0569cb9c06 rdf:first N412c6beb6d12442a83610426250b6f31
98 rdf:rest Nefafbfbfa6104f21aa9338ee27777b7f
99 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
100 schema:name Technology
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
103 schema:name Nanotechnology
104 rdf:type schema:DefinedTerm
105 sg:grant.3031799 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08318
106 rdf:type schema:MonetaryGrant
107 sg:grant.3068000 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08318
108 rdf:type schema:MonetaryGrant
109 sg:journal.1018957 schema:issn 0090-0028
110 1476-4687
111 schema:name Nature
112 rdf:type schema:Periodical
113 sg:person.01113523250.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
114 schema:familyName Wiesner
115 schema:givenName U.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113523250.02
117 rdf:type schema:Person
118 sg:person.011721150133.80 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
119 schema:familyName Zhu
120 schema:givenName G.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721150133.80
122 rdf:type schema:Person
123 sg:person.01205752041.48 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
124 schema:familyName Herz
125 schema:givenName E.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205752041.48
127 rdf:type schema:Person
128 sg:person.01225053603.20 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
129 schema:familyName Noginov
130 schema:givenName M. A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225053603.20
132 rdf:type schema:Person
133 sg:person.01354467334.69 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
134 schema:familyName Belgrave
135 schema:givenName A. M.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467334.69
137 rdf:type schema:Person
138 sg:person.01372510022.30 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
139 schema:familyName Narimanov
140 schema:givenName E. E.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510022.30
142 rdf:type schema:Person
143 sg:person.0621207034.28 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
144 schema:familyName Suteewong
145 schema:givenName T.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621207034.28
147 rdf:type schema:Person
148 sg:person.0661555412.41 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
149 schema:familyName Bakker
150 schema:givenName R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661555412.41
152 rdf:type schema:Person
153 sg:person.0744776455.55 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
154 schema:familyName Shalaev
155 schema:givenName V. M.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776455.55
157 rdf:type schema:Person
158 sg:pub.10.1007/s00340-006-2401-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408362
159 https://doi.org/10.1007/s00340-006-2401-0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nphoton.2007.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028344737
162 https://doi.org/10.1038/nphoton.2007.171
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphoton.2007.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017283404
165 https://doi.org/10.1038/nphoton.2007.182
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphoton.2008.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170945
168 https://doi.org/10.1038/nphoton.2008.82
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1017/cbo9781139644181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698536
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/jp062518g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056066352
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl0482478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013082571
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/b000136h schema:sameAs https://app.dimensions.ai/details/publication/pub.1053134976
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1825058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057824945
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.1894590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057830861
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.2364857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057853086
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/09500340408231813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017688435
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrev.69.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823134
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.101.226806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012458268
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.90.027402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016855344
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.94.177401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830290
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1111886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750281
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1131322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454628
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/josab.17.001329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169619
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1364/oe.15.002622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007850296
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1364/oe.16.001385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011394325
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1364/ol.23.001366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218175
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1364/ol.31.003022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224310
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1364/opex.12.004072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040662706
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
213 schema:name School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.261024.3 schema:alternateName Norfolk State University
216 schema:name Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
219 schema:name Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA
220 Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...