Demonstration of a spaser-based nanolaser View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-08

AUTHORS

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner

ABSTRACT

One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications. More... »

PAGES

1110

References to SciGraph publications

  • 2007-02. The effect of gain and absorption on surface plasmons in metal nanoparticles in APPLIED PHYSICS B
  • 2007-10. Lasing in metallic-coated nanocavities in NATURE PHOTONICS
  • 2007-10. Nanolasers: Goldfinger laser in NATURE PHOTONICS
  • 2008-06. Lasing spaser in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature08318

    DOI

    http://dx.doi.org/10.1038/nature08318

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014287162

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19684572


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Norfolk State University", 
              "id": "https://www.grid.ac/institutes/grid.261024.3", 
              "name": [
                "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noginov", 
            "givenName": "M. A.", 
            "id": "sg:person.01225053603.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225053603.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norfolk State University", 
              "id": "https://www.grid.ac/institutes/grid.261024.3", 
              "name": [
                "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "G.", 
            "id": "sg:person.011721150133.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721150133.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norfolk State University", 
              "id": "https://www.grid.ac/institutes/grid.261024.3", 
              "name": [
                "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belgrave", 
            "givenName": "A. M.", 
            "id": "sg:person.01354467334.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467334.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Purdue University", 
              "id": "https://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakker", 
            "givenName": "R.", 
            "id": "sg:person.0661555412.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661555412.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Purdue University", 
              "id": "https://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shalaev", 
            "givenName": "V. M.", 
            "id": "sg:person.0744776455.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776455.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Purdue University", 
              "id": "https://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Narimanov", 
            "givenName": "E. E.", 
            "id": "sg:person.01372510022.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510022.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA", 
                "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stout", 
            "givenName": "S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herz", 
            "givenName": "E.", 
            "id": "sg:person.01205752041.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205752041.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suteewong", 
            "givenName": "T.", 
            "id": "sg:person.0621207034.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621207034.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiesner", 
            "givenName": "U.", 
            "id": "sg:person.01113523250.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113523250.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1364/oe.15.002622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007850296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-006-2401-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009408362", 
              "https://doi.org/10.1007/s00340-006-2401-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-006-2401-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009408362", 
              "https://doi.org/10.1007/s00340-006-2401-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.16.001385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011394325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.226806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012458268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.226806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012458268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0482478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013082571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0482478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013082571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2008.82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014170945", 
              "https://doi.org/10.1038/nphoton.2008.82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.027402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016855344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.027402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016855344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017283404", 
              "https://doi.org/10.1038/nphoton.2007.182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500340408231813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017688435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1111886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017750281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.69.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022823134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.69.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022823134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2007.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028344737", 
              "https://doi.org/10.1038/nphoton.2007.171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/opex.12.004072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040662706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b000136h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053134976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp062518g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056066352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp062518g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056066352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1825058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057824945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1894590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057830861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2364857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057853086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.6.4370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060592879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.6.4370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060592879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.177401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.177401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060830290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1131322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062454628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josab.17.001329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065169619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.23.001366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065218175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.31.003022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065224310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139644181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098698536"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08", 
        "datePublishedReg": "2009-08-01", 
        "description": "One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature08318", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3068000", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3031799", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7259", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "460"
          }
        ], 
        "name": "Demonstration of a spaser-based nanolaser", 
        "pagination": "1110", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "44102b1fdb224f158f85e1de871442e9b11bfe3b6aed0a47986be16048897cb3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19684572"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature08318"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014287162"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature08318", 
          "https://app.dimensions.ai/details/publication/pub.1014287162"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64100_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature08318"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08318'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08318'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature08318 schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author N31b7e27be6c6403ba72047e9eb073c59
    4 schema:citation sg:pub.10.1007/s00340-006-2401-0
    5 sg:pub.10.1038/nphoton.2007.171
    6 sg:pub.10.1038/nphoton.2007.182
    7 sg:pub.10.1038/nphoton.2008.82
    8 https://doi.org/10.1017/cbo9781139644181
    9 https://doi.org/10.1021/jp062518g
    10 https://doi.org/10.1021/nl0482478
    11 https://doi.org/10.1039/b000136h
    12 https://doi.org/10.1063/1.1825058
    13 https://doi.org/10.1063/1.1894590
    14 https://doi.org/10.1063/1.2364857
    15 https://doi.org/10.1080/09500340408231813
    16 https://doi.org/10.1103/physrev.69.37
    17 https://doi.org/10.1103/physrevb.6.4370
    18 https://doi.org/10.1103/physrevlett.101.226806
    19 https://doi.org/10.1103/physrevlett.90.027402
    20 https://doi.org/10.1103/physrevlett.94.177401
    21 https://doi.org/10.1126/science.1111886
    22 https://doi.org/10.1126/science.1131322
    23 https://doi.org/10.1364/josab.17.001329
    24 https://doi.org/10.1364/oe.15.002622
    25 https://doi.org/10.1364/oe.16.001385
    26 https://doi.org/10.1364/ol.23.001366
    27 https://doi.org/10.1364/ol.31.003022
    28 https://doi.org/10.1364/opex.12.004072
    29 schema:datePublished 2009-08
    30 schema:datePublishedReg 2009-08-01
    31 schema:description One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N2a0cab4d7cde46b586d768ccd5799100
    36 Nd2dd7524ae8548f49f33a4b638687027
    37 sg:journal.1018957
    38 schema:name Demonstration of a spaser-based nanolaser
    39 schema:pagination 1110
    40 schema:productId N1038fef2a7984454a8640490ffeeb75d
    41 N63e183651b5b44a8b3284e2a180822d8
    42 Ne740c39fde4b4a2ba39dfae023b5041e
    43 Nf006ad8d72a9429797a2ecff071459f3
    44 Nf8224f549acc40c590254ef89bd63ba9
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287162
    46 https://doi.org/10.1038/nature08318
    47 schema:sdDatePublished 2019-04-11T09:24
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N05b4fdeb36e243dca6d1f97a176883b5
    50 schema:url https://www.nature.com/articles/nature08318
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N05b4fdeb36e243dca6d1f97a176883b5 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N1038fef2a7984454a8640490ffeeb75d schema:name dimensions_id
    57 schema:value pub.1014287162
    58 rdf:type schema:PropertyValue
    59 N13c99b3486bc417cbbf4fdc763cf9efd rdf:first sg:person.01354467334.69
    60 rdf:rest N97db58de271944d9a0b66e9c1f6be928
    61 N2a0cab4d7cde46b586d768ccd5799100 schema:issueNumber 7259
    62 rdf:type schema:PublicationIssue
    63 N31b7e27be6c6403ba72047e9eb073c59 rdf:first sg:person.01225053603.20
    64 rdf:rest Nae8f14f1dd3d4c7aa18729391d238732
    65 N447c1159541d4dc28d80d41ed595dcad rdf:first sg:person.01113523250.02
    66 rdf:rest rdf:nil
    67 N5af2ccecd94b46fd9bcef9eb075a418d schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    68 schema:familyName Stout
    69 schema:givenName S.
    70 rdf:type schema:Person
    71 N63e183651b5b44a8b3284e2a180822d8 schema:name readcube_id
    72 schema:value 44102b1fdb224f158f85e1de871442e9b11bfe3b6aed0a47986be16048897cb3
    73 rdf:type schema:PropertyValue
    74 N97db58de271944d9a0b66e9c1f6be928 rdf:first sg:person.0661555412.41
    75 rdf:rest Nf43a2f094ce747b1ac1968ff767e5b35
    76 Na91d4d9b52d24daaa5403c76e894db3f rdf:first N5af2ccecd94b46fd9bcef9eb075a418d
    77 rdf:rest Ndab2d519b9a3438299727a1ff13b5b24
    78 Nae8f14f1dd3d4c7aa18729391d238732 rdf:first sg:person.011721150133.80
    79 rdf:rest N13c99b3486bc417cbbf4fdc763cf9efd
    80 Nca6d249ba4ce4ab69535928a36af65db rdf:first sg:person.01372510022.30
    81 rdf:rest Na91d4d9b52d24daaa5403c76e894db3f
    82 Nd2dd7524ae8548f49f33a4b638687027 schema:volumeNumber 460
    83 rdf:type schema:PublicationVolume
    84 Ndab2d519b9a3438299727a1ff13b5b24 rdf:first sg:person.01205752041.48
    85 rdf:rest Nfa3afc578cbc41ae95d91a8da0488a3f
    86 Ne740c39fde4b4a2ba39dfae023b5041e schema:name doi
    87 schema:value 10.1038/nature08318
    88 rdf:type schema:PropertyValue
    89 Nf006ad8d72a9429797a2ecff071459f3 schema:name nlm_unique_id
    90 schema:value 0410462
    91 rdf:type schema:PropertyValue
    92 Nf43a2f094ce747b1ac1968ff767e5b35 rdf:first sg:person.0744776455.55
    93 rdf:rest Nca6d249ba4ce4ab69535928a36af65db
    94 Nf8224f549acc40c590254ef89bd63ba9 schema:name pubmed_id
    95 schema:value 19684572
    96 rdf:type schema:PropertyValue
    97 Nfa3afc578cbc41ae95d91a8da0488a3f rdf:first sg:person.0621207034.28
    98 rdf:rest N447c1159541d4dc28d80d41ed595dcad
    99 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Technology
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Nanotechnology
    104 rdf:type schema:DefinedTerm
    105 sg:grant.3031799 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08318
    106 rdf:type schema:MonetaryGrant
    107 sg:grant.3068000 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08318
    108 rdf:type schema:MonetaryGrant
    109 sg:journal.1018957 schema:issn 0090-0028
    110 1476-4687
    111 schema:name Nature
    112 rdf:type schema:Periodical
    113 sg:person.01113523250.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    114 schema:familyName Wiesner
    115 schema:givenName U.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113523250.02
    117 rdf:type schema:Person
    118 sg:person.011721150133.80 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
    119 schema:familyName Zhu
    120 schema:givenName G.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721150133.80
    122 rdf:type schema:Person
    123 sg:person.01205752041.48 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    124 schema:familyName Herz
    125 schema:givenName E.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205752041.48
    127 rdf:type schema:Person
    128 sg:person.01225053603.20 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
    129 schema:familyName Noginov
    130 schema:givenName M. A.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225053603.20
    132 rdf:type schema:Person
    133 sg:person.01354467334.69 schema:affiliation https://www.grid.ac/institutes/grid.261024.3
    134 schema:familyName Belgrave
    135 schema:givenName A. M.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354467334.69
    137 rdf:type schema:Person
    138 sg:person.01372510022.30 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
    139 schema:familyName Narimanov
    140 schema:givenName E. E.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372510022.30
    142 rdf:type schema:Person
    143 sg:person.0621207034.28 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    144 schema:familyName Suteewong
    145 schema:givenName T.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621207034.28
    147 rdf:type schema:Person
    148 sg:person.0661555412.41 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
    149 schema:familyName Bakker
    150 schema:givenName R.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661555412.41
    152 rdf:type schema:Person
    153 sg:person.0744776455.55 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
    154 schema:familyName Shalaev
    155 schema:givenName V. M.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744776455.55
    157 rdf:type schema:Person
    158 sg:pub.10.1007/s00340-006-2401-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408362
    159 https://doi.org/10.1007/s00340-006-2401-0
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nphoton.2007.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028344737
    162 https://doi.org/10.1038/nphoton.2007.171
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nphoton.2007.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017283404
    165 https://doi.org/10.1038/nphoton.2007.182
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nphoton.2008.82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014170945
    168 https://doi.org/10.1038/nphoton.2008.82
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1017/cbo9781139644181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698536
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1021/jp062518g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056066352
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/nl0482478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013082571
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1039/b000136h schema:sameAs https://app.dimensions.ai/details/publication/pub.1053134976
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1063/1.1825058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057824945
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1063/1.1894590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057830861
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1063/1.2364857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057853086
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1080/09500340408231813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017688435
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physrev.69.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022823134
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevlett.101.226806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012458268
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevlett.90.027402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016855344
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physrevlett.94.177401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830290
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1126/science.1111886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750281
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1126/science.1131322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454628
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1364/josab.17.001329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169619
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1364/oe.15.002622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007850296
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1364/oe.16.001385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011394325
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1364/ol.23.001366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218175
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1364/ol.31.003022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224310
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1364/opex.12.004072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040662706
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
    213 schema:name School of Electrical & Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.261024.3 schema:alternateName Norfolk State University
    216 schema:name Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    219 schema:name Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA
    220 Materials Science and Engineering Department, Cornell University, Ithaca, New York 14850, USA
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...