An upper limit on the stochastic gravitational-wave background of cosmological origin View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08

AUTHORS

ABSTRACT

Gravitational waves: LIGO sets the limitsThe general theory of relativity predicts that all accelerating objects produce gravitational waves — analogous to electromagnetic waves — that should be detectable for instance in the case of extremely massive objects such as black holes undergoing acceleration. The existence of such waves has been inferred indirectly, but an important goal in physics is their direct observation, a feat that would both validate Einstein's theory and lead to new areas of cosmology. Now early results from LIGO (the Laser Interferometer Gravitational-Wave Observatory), one of the handful of detectors searching for gravity waves, have provided a starting point for further gravity hunts by deriving an upper limit for the stochastic background of gravitational waves of cosmological origin. The data rule out models of early Universe evolution with a relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. More... »

PAGES

990-994

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08278

DOI

http://dx.doi.org/10.1038/nature08278

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044693065

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19693079


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {}
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "Gravitational waves: LIGO sets the limitsThe general theory of relativity predicts that all accelerating objects produce gravitational waves \u2014 analogous to electromagnetic waves \u2014 that should be detectable for instance in the case of extremely massive objects such as black holes undergoing acceleration. The existence of such waves has been inferred indirectly, but an important goal in physics is their direct observation, a feat that would both validate Einstein's theory and lead to new areas of cosmology. Now early results from LIGO (the Laser Interferometer Gravitational-Wave Observatory), one of the handful of detectors searching for gravity waves, have provided a starting point for further gravity hunts by deriving an upper limit for the stochastic background of gravitational waves of cosmological origin. The data rule out models of early Universe evolution with a relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature08278", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2754598", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2766500", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2759612", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2759135", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2774771", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2759213", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7258", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "460"
      }
    ], 
    "keywords": [
      "cosmological origin", 
      "stochastic gravitational wave background", 
      "gravitational wave background", 
      "early Universe evolution", 
      "string theory models", 
      "upper limit", 
      "gravitational waves", 
      "stochastic background", 
      "massive objects", 
      "universe evolution", 
      "black holes", 
      "large equations", 
      "Einstein's theory", 
      "electromagnetic waves", 
      "such waves", 
      "gravity waves", 
      "LIGO", 
      "general theory", 
      "string tension", 
      "state parameters", 
      "theory model", 
      "waves", 
      "direct observation", 
      "theory", 
      "cosmology", 
      "physics", 
      "relativity", 
      "detector", 
      "equations", 
      "earlier results", 
      "holes", 
      "model", 
      "limit", 
      "starting point", 
      "objects", 
      "acceleration", 
      "existence", 
      "parameters", 
      "origin", 
      "evolution", 
      "point", 
      "new areas", 
      "instances", 
      "important goal", 
      "background", 
      "cases", 
      "observations", 
      "results", 
      "data", 
      "handful", 
      "goal", 
      "feat", 
      "tension", 
      "area", 
      "Hunt", 
      "limitsThe general theory", 
      "handful of detectors", 
      "further gravity hunts", 
      "gravity hunts", 
      "small string tension"
    ], 
    "name": "An upper limit on the stochastic gravitational-wave background of cosmological origin", 
    "pagination": "990-994", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044693065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08278"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19693079"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08278", 
      "https://app.dimensions.ai/details/publication/pub.1044693065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature08278"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08278'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08278'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08278'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08278'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      88 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08278 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:0202
4 schema:author Nb37690949a1243e59b2849d38a106dbf
5 schema:datePublished 2009-08
6 schema:datePublishedReg 2009-08-01
7 schema:description Gravitational waves: LIGO sets the limitsThe general theory of relativity predicts that all accelerating objects produce gravitational waves — analogous to electromagnetic waves — that should be detectable for instance in the case of extremely massive objects such as black holes undergoing acceleration. The existence of such waves has been inferred indirectly, but an important goal in physics is their direct observation, a feat that would both validate Einstein's theory and lead to new areas of cosmology. Now early results from LIGO (the Laser Interferometer Gravitational-Wave Observatory), one of the handful of detectors searching for gravity waves, have provided a starting point for further gravity hunts by deriving an upper limit for the stochastic background of gravitational waves of cosmological origin. The data rule out models of early Universe evolution with a relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N40f4172e4d494f128e063c8f6b44e984
12 N6066363cbe2c49afadd7736115f4d71e
13 sg:journal.1018957
14 schema:keywords Einstein's theory
15 Hunt
16 LIGO
17 acceleration
18 area
19 background
20 black holes
21 cases
22 cosmological origin
23 cosmology
24 data
25 detector
26 direct observation
27 earlier results
28 early Universe evolution
29 electromagnetic waves
30 equations
31 evolution
32 existence
33 feat
34 further gravity hunts
35 general theory
36 goal
37 gravitational wave background
38 gravitational waves
39 gravity hunts
40 gravity waves
41 handful
42 handful of detectors
43 holes
44 important goal
45 instances
46 large equations
47 limit
48 limitsThe general theory
49 massive objects
50 model
51 new areas
52 objects
53 observations
54 origin
55 parameters
56 physics
57 point
58 relativity
59 results
60 small string tension
61 starting point
62 state parameters
63 stochastic background
64 stochastic gravitational wave background
65 string tension
66 string theory models
67 such waves
68 tension
69 theory
70 theory model
71 universe evolution
72 upper limit
73 waves
74 schema:name An upper limit on the stochastic gravitational-wave background of cosmological origin
75 schema:pagination 990-994
76 schema:productId N4bbe49fdbb654813874b86dc7dc574b0
77 N76e2370132074a2cbbb450814c303f49
78 N9f686d119d7947bcb9a7945cca589f3b
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044693065
80 https://doi.org/10.1038/nature08278
81 schema:sdDatePublished 2021-11-01T18:14
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N4c3f20c8abf94078b5ef1e74f148a6fe
84 schema:url https://doi.org/10.1038/nature08278
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N40f4172e4d494f128e063c8f6b44e984 schema:issueNumber 7258
89 rdf:type schema:PublicationIssue
90 N4bbe49fdbb654813874b86dc7dc574b0 schema:name pubmed_id
91 schema:value 19693079
92 rdf:type schema:PropertyValue
93 N4c3f20c8abf94078b5ef1e74f148a6fe schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N6066363cbe2c49afadd7736115f4d71e schema:volumeNumber 460
96 rdf:type schema:PublicationVolume
97 N76e2370132074a2cbbb450814c303f49 schema:name doi
98 schema:value 10.1038/nature08278
99 rdf:type schema:PropertyValue
100 N9f686d119d7947bcb9a7945cca589f3b schema:name dimensions_id
101 schema:value pub.1044693065
102 rdf:type schema:PropertyValue
103 Nb37690949a1243e59b2849d38a106dbf rdf:first N9e741c7d73dc4984be86069f4ab24d8d
104 rdf:rest rdf:nil
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
109 schema:name Astronomical and Space Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
113 rdf:type schema:DefinedTerm
114 sg:grant.2754598 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
115 rdf:type schema:MonetaryGrant
116 sg:grant.2759135 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
117 rdf:type schema:MonetaryGrant
118 sg:grant.2759213 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
119 rdf:type schema:MonetaryGrant
120 sg:grant.2759612 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
121 rdf:type schema:MonetaryGrant
122 sg:grant.2766500 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
123 rdf:type schema:MonetaryGrant
124 sg:grant.2774771 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08278
125 rdf:type schema:MonetaryGrant
126 sg:journal.1018957 schema:issn 0028-0836
127 1476-4687
128 schema:name Nature
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
 




Preview window. Press ESC to close (or click here)


...