Programming cells by multiplex genome engineering and accelerated evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08

AUTHORS

Harris H. Wang, Farren J. Isaacs, Peter A. Carr, Zachary Z. Sun, George Xu, Craig R. Forest, George M. Church

ABSTRACT

The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties. More... »

PAGES

894

Journal

TITLE

Nature

ISSUE

7257

VOLUME

460

Related Patents

  • Methods For Generating Barcoded Combinatorial Libraries
  • Microbial Strain Improvement By A Htp Genomic Engineering Platform
  • Bacterial Cells With Improved Tolerance To Isobutyric Acid
  • Engineering Dna Assembly In Vivo And Methods Of Making And Using The Reverse Transcriptase Technology
  • Processes And Host Cells For Genome, Pathway, And Biomolecular Engineering
  • Metabolic Engineering Of Microbial Organisms
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Continuous Directed Evolution
  • Methods Of Production Of Products Of Metabolic Pathways
  • Cell-Free Preparation Of Carbapenems
  • Continuous Directed Evolution Of Proteins And Nucleic Acids
  • Massively Parallel Combinatorial Genetics
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Methods And Systems For Cell State Quantification
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Metabolic Engineering Of Microbial Organisms
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Method For Constructing Recombinant Bacterium For Producing Non-Native Protein, And Utilization Of Same
  • Crispr Enabled Multiplexed Genome Engineering
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Apparatus For Continuous Directed Evolution Of Proteins And Nucleic Acids
  • Processes And Host Cells For Genome, Pathway, And Biomolecular Engineering
  • Recombinant Cellular Iysate System For Producing A Product Of Interest
  • Nucleic Acid-Guided Nucleases
  • Biological Circuit Chemotactic Converters
  • Biological Analog-To-Digital And Digital-To-Analog Converters
  • Methods For Control Of Flux In Metabolic Pathways
  • Engineered Phosphoglucose Isomerase Proteins With A Protease Cleavage Site
  • Massively Parallel Combinatorial Genetics
  • Dynamic Genome Engineering
  • Microbial Strain Improvement By A Htp Genomic Engineering Platform
  • Cell-Free System For Converting Methane Into Fuel And Chemical Compounds
  • Protecting Group Chemistry For Clean, Reductant-Free Dyeing
  • Microbial Engineering For The Production Of Chemical And Pharmaceutical Products From The Isoprenoid Pathway
  • Genome Editing
  • Methods For Control Of Flux In Metabolic Pathways Through Protease Manipulation
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • A Method Of Identifying A Cell With Respect To Their Wild-Type Increased Intracellular Concentration Of A Specific Metabolites, Wherein The Change In The Cell By Recombi--Neering Is Achieved, As Well As A Process For The Production Of A With Respect To Its Wild Type Genetically Modified Production Cell With An Optimized Production Of A Specific Metabolites, A Method For The Production Of The Metabolites Thereof, As Well As Suitable Nucleic Acids
  • Nucleic Acid-Guided Nucleases
  • Microbial Production Of Natural Sweeteners, Diterpenoid Steviol Glycosides
  • Methods Of Production Of Products Of Metabolic Pathways
  • Continuous Directed Evolution
  • Bacterial Cells With Improved Tolerance To Diacids
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature08187

    DOI

    http://dx.doi.org/10.1038/nature08187

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004117037

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19633652


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carotenoids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Directed Molecular Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lycopene", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pentosephosphates", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA", 
                "Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Program in Medical Engineering Medical Physics, Harvard-MIT Division of Health Sciences and Technology,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Harris H.", 
            "id": "sg:person.01111765215.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111765215.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isaacs", 
            "givenName": "Farren J.", 
            "id": "sg:person.0650377331.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650377331.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "The Center for Bits and Atoms,", 
                "Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carr", 
            "givenName": "Peter A.", 
            "id": "sg:person.0775536615.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775536615.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard College, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Zachary Z.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard College, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "George", 
            "id": "sg:person.01001377715.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001377715.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forest", 
            "givenName": "Craig R.", 
            "id": "sg:person.01074012745.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074012745.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Church", 
            "givenName": "George M.", 
            "id": "sg:person.01115626315.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/2417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002783524", 
              "https://doi.org/10.1038/2417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002783524", 
              "https://doi.org/10.1038/2417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002810105", 
              "https://doi.org/10.1038/34663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002810105", 
              "https://doi.org/10.1038/34663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2.1.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003600302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/22.23.4953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004183838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005375442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.100127597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006161022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.20539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006300979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.20539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006300979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006425891", 
              "https://doi.org/10.1038/nrd1256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006425891", 
              "https://doi.org/10.1038/nrd1256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.6.8.1107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007462489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008567554", 
              "https://doi.org/10.1038/nrg1088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008567554", 
              "https://doi.org/10.1038/nrg1088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009412636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1117389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010697532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010803217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015284867", 
              "https://doi.org/10.1038/nprot.2008.227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2005.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016352117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021511879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2004.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026649161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026689119", 
              "https://doi.org/10.1038/nbt1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026689119", 
              "https://doi.org/10.1038/nbt1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030303005", 
              "https://doi.org/10.1038/nbt1083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030303005", 
              "https://doi.org/10.1038/nbt1083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415644a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032762476", 
              "https://doi.org/10.1038/415644a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415644a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032762476", 
              "https://doi.org/10.1038/415644a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1107851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032827529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.121164898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034129502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2004.09.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037495321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0709089105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039318416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2434959100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042779710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bp000137t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048164162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2007.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049291807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050594065", 
              "https://doi.org/10.1038/21395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050594065", 
              "https://doi.org/10.1038/21395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052700485", 
              "https://doi.org/10.1038/nature03151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052700485", 
              "https://doi.org/10.1038/nature03151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346818a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479478", 
              "https://doi.org/10.1038/346818a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1093857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/05386rr02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069097101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3869889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070467849"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-08", 
        "datePublishedReg": "2009-08-01", 
        "description": "The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature08187", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2355510", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7257", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "460"
          }
        ], 
        "name": "Programming cells by multiplex genome engineering and accelerated evolution", 
        "pagination": "894", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "139e4348ed981fcd88e09997d2b0830e1685287444014d4228c34f0654ba3e7d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19633652"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature08187"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004117037"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature08187", 
          "https://app.dimensions.ai/details/publication/pub.1004117037"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64085_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature08187"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08187'


     

    This table displays all metadata directly associated to this object as RDF triples.

    276 TRIPLES      21 PREDICATES      73 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature08187 schema:about N22c394b9e8f34cdb8eb56cf17654c121
    2 N37b321a40b7946a896674c85cdf24474
    3 N39976c79e8bc4befa2162b7485b687a4
    4 N45cada4e846549a3b7d3192153a34d58
    5 N931c7d7be45046f485d0eba59adfe8e1
    6 Na66415263b874a4c8bcecfdcc19d1626
    7 Nb9322909fa6a4344b9cddb6e6bfdc566
    8 Nd621c47832fc47778d483d0e81c6ab46
    9 Nd948285002a0470cae0756a9af18349a
    10 Nef72560b83e1439280d2372f35e6d2f7
    11 Nfdda72ed207448c699781223c97acda7
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N7c74371aca0f44ffa72810294717b71f
    15 schema:citation sg:pub.10.1038/21395
    16 sg:pub.10.1038/2417
    17 sg:pub.10.1038/34663
    18 sg:pub.10.1038/346818a0
    19 sg:pub.10.1038/415644a
    20 sg:pub.10.1038/nature03151
    21 sg:pub.10.1038/nbt1083
    22 sg:pub.10.1038/nbt1226
    23 sg:pub.10.1038/nprot.2008.227
    24 sg:pub.10.1038/nrd1256
    25 sg:pub.10.1038/nrg1088
    26 https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h
    27 https://doi.org/10.1002/bit.20539
    28 https://doi.org/10.1016/j.tig.2004.09.013
    29 https://doi.org/10.1016/j.ymben.2004.12.003
    30 https://doi.org/10.1016/j.ymben.2005.08.005
    31 https://doi.org/10.1016/j.ymben.2007.03.003
    32 https://doi.org/10.1021/bp000137t
    33 https://doi.org/10.1073/pnas.0709089105
    34 https://doi.org/10.1073/pnas.100127597
    35 https://doi.org/10.1073/pnas.121164898
    36 https://doi.org/10.1073/pnas.2434959100
    37 https://doi.org/10.1093/nar/22.23.4953
    38 https://doi.org/10.1093/nar/gkh881
    39 https://doi.org/10.1093/nar/gki591
    40 https://doi.org/10.1101/gr.2.1.28
    41 https://doi.org/10.1105/tpc.6.8.1107
    42 https://doi.org/10.1126/science.1093857
    43 https://doi.org/10.1126/science.1107851
    44 https://doi.org/10.1126/science.1117389
    45 https://doi.org/10.1126/science.1151721
    46 https://doi.org/10.2144/05386rr02
    47 https://doi.org/10.2307/3869889
    48 schema:datePublished 2009-08
    49 schema:datePublishedReg 2009-08-01
    50 schema:description The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree true
    54 schema:isPartOf N113b12de74d940149a4b454d59c5df90
    55 N89a8f332613f4383a0416048a0c7511e
    56 sg:journal.1018957
    57 schema:name Programming cells by multiplex genome engineering and accelerated evolution
    58 schema:pagination 894
    59 schema:productId N36c73e1530a0449889122bbbf17b4f25
    60 N658929ce5959464fa895f5a70155f231
    61 Nb335ac25c2754bfb8221f2e43bf381d8
    62 Nc0e25d9f49c4406ebf35ef55f86617f3
    63 Ne3d0f1a9d78c45c68f1d8859cdac9e29
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004117037
    65 https://doi.org/10.1038/nature08187
    66 schema:sdDatePublished 2019-04-11T09:22
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Nc5f7ca5f2cfd49d2a924c1cb844eb21f
    69 schema:url https://www.nature.com/articles/nature08187
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N0ff5d0c329ad41d19d4fb1a57621c915 rdf:first sg:person.01074012745.57
    74 rdf:rest Nc419836f5beb4c3ba13c8bdf1553d81e
    75 N113b12de74d940149a4b454d59c5df90 schema:volumeNumber 460
    76 rdf:type schema:PublicationVolume
    77 N22c394b9e8f34cdb8eb56cf17654c121 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Chromosomes, Bacterial
    79 rdf:type schema:DefinedTerm
    80 N36c73e1530a0449889122bbbf17b4f25 schema:name pubmed_id
    81 schema:value 19633652
    82 rdf:type schema:PropertyValue
    83 N37b321a40b7946a896674c85cdf24474 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Escherichia coli
    85 rdf:type schema:DefinedTerm
    86 N39976c79e8bc4befa2162b7485b687a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Carotenoids
    88 rdf:type schema:DefinedTerm
    89 N45cada4e846549a3b7d3192153a34d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Lycopene
    91 rdf:type schema:DefinedTerm
    92 N658929ce5959464fa895f5a70155f231 schema:name readcube_id
    93 schema:value 139e4348ed981fcd88e09997d2b0830e1685287444014d4228c34f0654ba3e7d
    94 rdf:type schema:PropertyValue
    95 N7c74371aca0f44ffa72810294717b71f rdf:first sg:person.01111765215.26
    96 rdf:rest Nfbaebc6bec964294a06ed5758c8d4a13
    97 N89a8f332613f4383a0416048a0c7511e schema:issueNumber 7257
    98 rdf:type schema:PublicationIssue
    99 N90b99509d22b40ab93c962d5537839f0 rdf:first Na10e853c751f47beacc1184b0df1cf02
    100 rdf:rest Nf8215ec045354e9d987e663260945968
    101 N931c7d7be45046f485d0eba59adfe8e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name DNA
    103 rdf:type schema:DefinedTerm
    104 Na10e853c751f47beacc1184b0df1cf02 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    105 schema:familyName Sun
    106 schema:givenName Zachary Z.
    107 rdf:type schema:Person
    108 Na66415263b874a4c8bcecfdcc19d1626 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Genetic Variation
    110 rdf:type schema:DefinedTerm
    111 Nb335ac25c2754bfb8221f2e43bf381d8 schema:name nlm_unique_id
    112 schema:value 0410462
    113 rdf:type schema:PropertyValue
    114 Nb9322909fa6a4344b9cddb6e6bfdc566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Genome, Bacterial
    116 rdf:type schema:DefinedTerm
    117 Nc0e25d9f49c4406ebf35ef55f86617f3 schema:name dimensions_id
    118 schema:value pub.1004117037
    119 rdf:type schema:PropertyValue
    120 Nc419836f5beb4c3ba13c8bdf1553d81e rdf:first sg:person.01115626315.03
    121 rdf:rest rdf:nil
    122 Nc5f7ca5f2cfd49d2a924c1cb844eb21f schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 Nd621c47832fc47778d483d0e81c6ab46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Pentosephosphates
    126 rdf:type schema:DefinedTerm
    127 Nd948285002a0470cae0756a9af18349a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Directed Molecular Evolution
    129 rdf:type schema:DefinedTerm
    130 Ne3d0f1a9d78c45c68f1d8859cdac9e29 schema:name doi
    131 schema:value 10.1038/nature08187
    132 rdf:type schema:PropertyValue
    133 Nef72560b83e1439280d2372f35e6d2f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Alleles
    135 rdf:type schema:DefinedTerm
    136 Nf8215ec045354e9d987e663260945968 rdf:first sg:person.01001377715.74
    137 rdf:rest N0ff5d0c329ad41d19d4fb1a57621c915
    138 Nfbaebc6bec964294a06ed5758c8d4a13 rdf:first sg:person.0650377331.29
    139 rdf:rest Nfd76b515c2e04b00a0b1257346ca4fa7
    140 Nfd76b515c2e04b00a0b1257346ca4fa7 rdf:first sg:person.0775536615.19
    141 rdf:rest N90b99509d22b40ab93c962d5537839f0
    142 Nfdda72ed207448c699781223c97acda7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Biotechnology
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biological Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Genetics
    150 rdf:type schema:DefinedTerm
    151 sg:grant.2355510 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08187
    152 rdf:type schema:MonetaryGrant
    153 sg:journal.1018957 schema:issn 0090-0028
    154 1476-4687
    155 schema:name Nature
    156 rdf:type schema:Periodical
    157 sg:person.01001377715.74 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    158 schema:familyName Xu
    159 schema:givenName George
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001377715.74
    161 rdf:type schema:Person
    162 sg:person.01074012745.57 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    163 schema:familyName Forest
    164 schema:givenName Craig R.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074012745.57
    166 rdf:type schema:Person
    167 sg:person.01111765215.26 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    168 schema:familyName Wang
    169 schema:givenName Harris H.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111765215.26
    171 rdf:type schema:Person
    172 sg:person.01115626315.03 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    173 schema:familyName Church
    174 schema:givenName George M.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
    176 rdf:type schema:Person
    177 sg:person.0650377331.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    178 schema:familyName Isaacs
    179 schema:givenName Farren J.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650377331.29
    181 rdf:type schema:Person
    182 sg:person.0775536615.19 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    183 schema:familyName Carr
    184 schema:givenName Peter A.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775536615.19
    186 rdf:type schema:Person
    187 sg:pub.10.1038/21395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594065
    188 https://doi.org/10.1038/21395
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/2417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783524
    191 https://doi.org/10.1038/2417
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/34663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002810105
    194 https://doi.org/10.1038/34663
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/346818a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479478
    197 https://doi.org/10.1038/346818a0
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/415644a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762476
    200 https://doi.org/10.1038/415644a
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature03151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700485
    203 https://doi.org/10.1038/nature03151
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nbt1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030303005
    206 https://doi.org/10.1038/nbt1083
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nbt1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026689119
    209 https://doi.org/10.1038/nbt1226
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nprot.2008.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015284867
    212 https://doi.org/10.1038/nprot.2008.227
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nrd1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006425891
    215 https://doi.org/10.1038/nrd1256
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nrg1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008567554
    218 https://doi.org/10.1038/nrg1088
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803217
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1002/bit.20539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300979
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.tig.2004.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495321
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.ymben.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649161
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.ymben.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016352117
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.ymben.2007.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049291807
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1021/bp000137t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048164162
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1073/pnas.0709089105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039318416
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.100127597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006161022
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.121164898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034129502
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.2434959100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779710
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1093/nar/22.23.4953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004183838
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/nar/gkh881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021511879
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gki591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005375442
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1101/gr.2.1.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600302
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1105/tpc.6.8.1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007462489
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.1093857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449306
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.1107851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032827529
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1126/science.1151721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412636
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.2144/05386rr02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097101
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.2307/3869889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467849
    263 rdf:type schema:CreativeWork
    264 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    265 schema:name Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    266 The Center for Bits and Atoms,
    267 rdf:type schema:Organization
    268 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
    269 schema:name George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    272 schema:name Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
    273 Harvard College, Cambridge, Massachusetts 02138, USA
    274 Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
    275 Program in Medical Engineering Medical Physics, Harvard-MIT Division of Health Sciences and Technology,
    276 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...