Programming cells by multiplex genome engineering and accelerated evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08

AUTHORS

Harris H. Wang, Farren J. Isaacs, Peter A. Carr, Zachary Z. Sun, George Xu, Craig R. Forest, George M. Church

ABSTRACT

The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties. More... »

PAGES

894

Journal

TITLE

Nature

ISSUE

7257

VOLUME

460

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature08187

DOI

http://dx.doi.org/10.1038/nature08187

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004117037

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19633652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotenoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Directed Molecular Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lycopene", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pentosephosphates", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA", 
            "Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA", 
            "Program in Medical Engineering Medical Physics, Harvard-MIT Division of Health Sciences and Technology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Harris H.", 
        "id": "sg:person.01111765215.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111765215.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isaacs", 
        "givenName": "Farren J.", 
        "id": "sg:person.0650377331.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650377331.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Center for Bits and Atoms,", 
            "Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carr", 
        "givenName": "Peter A.", 
        "id": "sg:person.0775536615.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775536615.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard College, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zachary Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard College, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "George", 
        "id": "sg:person.01001377715.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001377715.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forest", 
        "givenName": "Craig R.", 
        "id": "sg:person.01074012745.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074012745.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Church", 
        "givenName": "George M.", 
        "id": "sg:person.01115626315.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/2417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002783524", 
          "https://doi.org/10.1038/2417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002783524", 
          "https://doi.org/10.1038/2417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002810105", 
          "https://doi.org/10.1038/34663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002810105", 
          "https://doi.org/10.1038/34663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2.1.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003600302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.23.4953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004183838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005375442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.100127597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006161022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006425891", 
          "https://doi.org/10.1038/nrd1256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006425891", 
          "https://doi.org/10.1038/nrd1256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.6.8.1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007462489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008567554", 
          "https://doi.org/10.1038/nrg1088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008567554", 
          "https://doi.org/10.1038/nrg1088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1151721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009412636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010803217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015284867", 
          "https://doi.org/10.1038/nprot.2008.227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016352117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021511879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2004.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026689119", 
          "https://doi.org/10.1038/nbt1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026689119", 
          "https://doi.org/10.1038/nbt1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030303005", 
          "https://doi.org/10.1038/nbt1083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030303005", 
          "https://doi.org/10.1038/nbt1083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415644a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032762476", 
          "https://doi.org/10.1038/415644a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415644a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032762476", 
          "https://doi.org/10.1038/415644a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1107851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032827529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.121164898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034129502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2004.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709089105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039318416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2434959100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042779710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp000137t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048164162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2007.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049291807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594065", 
          "https://doi.org/10.1038/21395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050594065", 
          "https://doi.org/10.1038/21395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052700485", 
          "https://doi.org/10.1038/nature03151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052700485", 
          "https://doi.org/10.1038/nature03151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346818a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053479478", 
          "https://doi.org/10.1038/346818a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1093857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05386rr02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3869889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070467849"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature08187", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2355510", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7257", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "460"
      }
    ], 
    "name": "Programming cells by multiplex genome engineering and accelerated evolution", 
    "pagination": "894", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "139e4348ed981fcd88e09997d2b0830e1685287444014d4228c34f0654ba3e7d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19633652"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature08187"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004117037"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature08187", 
      "https://app.dimensions.ai/details/publication/pub.1004117037"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64085_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature08187"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08187'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08187'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      73 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature08187 schema:about N07aa7509ba5f47c9a486522310e1f80e
2 N1b3a38d83151462798d622cdffe15421
3 N377e75de9c8c484cb7f8c21fbea80faf
4 N511a4c83647c40c1828b5a99b5ba0bc0
5 N7105c6a1b350421f930d19a86dcd5f43
6 N865efe5debdb417791c4ebd20cb9f3a9
7 N90a12a4cfe104a5bb0079dc9d045348c
8 N9db5390d11864ea4ae7bdc09aa6bb0f8
9 Na70a314c45084d458584a0cdf9cafe53
10 Ne0e2a70197724f9bae02f32bc1a71617
11 Nf917363a79a5420a861b9c5e1fe372c4
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N0e31699a87634becbcc263d0695643cf
15 schema:citation sg:pub.10.1038/21395
16 sg:pub.10.1038/2417
17 sg:pub.10.1038/34663
18 sg:pub.10.1038/346818a0
19 sg:pub.10.1038/415644a
20 sg:pub.10.1038/nature03151
21 sg:pub.10.1038/nbt1083
22 sg:pub.10.1038/nbt1226
23 sg:pub.10.1038/nprot.2008.227
24 sg:pub.10.1038/nrd1256
25 sg:pub.10.1038/nrg1088
26 https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h
27 https://doi.org/10.1002/bit.20539
28 https://doi.org/10.1016/j.tig.2004.09.013
29 https://doi.org/10.1016/j.ymben.2004.12.003
30 https://doi.org/10.1016/j.ymben.2005.08.005
31 https://doi.org/10.1016/j.ymben.2007.03.003
32 https://doi.org/10.1021/bp000137t
33 https://doi.org/10.1073/pnas.0709089105
34 https://doi.org/10.1073/pnas.100127597
35 https://doi.org/10.1073/pnas.121164898
36 https://doi.org/10.1073/pnas.2434959100
37 https://doi.org/10.1093/nar/22.23.4953
38 https://doi.org/10.1093/nar/gkh881
39 https://doi.org/10.1093/nar/gki591
40 https://doi.org/10.1101/gr.2.1.28
41 https://doi.org/10.1105/tpc.6.8.1107
42 https://doi.org/10.1126/science.1093857
43 https://doi.org/10.1126/science.1107851
44 https://doi.org/10.1126/science.1117389
45 https://doi.org/10.1126/science.1151721
46 https://doi.org/10.2144/05386rr02
47 https://doi.org/10.2307/3869889
48 schema:datePublished 2009-08
49 schema:datePublishedReg 2009-08-01
50 schema:description The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Na86a5bef777d441082c9c10db7a6ba8a
55 Nf58195e56d1344dead1b823612cf5ddb
56 sg:journal.1018957
57 schema:name Programming cells by multiplex genome engineering and accelerated evolution
58 schema:pagination 894
59 schema:productId N4a692b0902264aa08327057f2d054b37
60 N911bd26b5d7947cc85d117f2dee2504b
61 Nbb14da0653f54fa8872112a0725295e4
62 Nc2b14bddcf0545458b36549ac6cffcec
63 Ndb384228146f4e70beae858bca0e783a
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004117037
65 https://doi.org/10.1038/nature08187
66 schema:sdDatePublished 2019-04-11T09:22
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N98f28a53d2bf4bde9dc801fb13f08db5
69 schema:url https://www.nature.com/articles/nature08187
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N07aa7509ba5f47c9a486522310e1f80e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Genetic Variation
75 rdf:type schema:DefinedTerm
76 N0e31699a87634becbcc263d0695643cf rdf:first sg:person.01111765215.26
77 rdf:rest N2c7827f66d3a4c62aded24f6a5c2d058
78 N1b3a38d83151462798d622cdffe15421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Chromosomes, Bacterial
80 rdf:type schema:DefinedTerm
81 N2209bac12cbc4e1c892e04be6306296b rdf:first N8c6a41932fa542e792c7e55841cfdfc5
82 rdf:rest N4005396b1d184cc58f7ed5135a7d5969
83 N2c7827f66d3a4c62aded24f6a5c2d058 rdf:first sg:person.0650377331.29
84 rdf:rest N3c2d9ca0f3314e79bf237f2ba7cd8739
85 N377e75de9c8c484cb7f8c21fbea80faf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Lycopene
87 rdf:type schema:DefinedTerm
88 N3c2d9ca0f3314e79bf237f2ba7cd8739 rdf:first sg:person.0775536615.19
89 rdf:rest N2209bac12cbc4e1c892e04be6306296b
90 N4005396b1d184cc58f7ed5135a7d5969 rdf:first sg:person.01001377715.74
91 rdf:rest N4e63ca9f52bf4e9982e1dcea468da5fa
92 N4a692b0902264aa08327057f2d054b37 schema:name readcube_id
93 schema:value 139e4348ed981fcd88e09997d2b0830e1685287444014d4228c34f0654ba3e7d
94 rdf:type schema:PropertyValue
95 N4e63ca9f52bf4e9982e1dcea468da5fa rdf:first sg:person.01074012745.57
96 rdf:rest N5d6906adee6c418784d964510efa4eec
97 N511a4c83647c40c1828b5a99b5ba0bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Directed Molecular Evolution
99 rdf:type schema:DefinedTerm
100 N5d6906adee6c418784d964510efa4eec rdf:first sg:person.01115626315.03
101 rdf:rest rdf:nil
102 N7105c6a1b350421f930d19a86dcd5f43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Biotechnology
104 rdf:type schema:DefinedTerm
105 N865efe5debdb417791c4ebd20cb9f3a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Alleles
107 rdf:type schema:DefinedTerm
108 N8c6a41932fa542e792c7e55841cfdfc5 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
109 schema:familyName Sun
110 schema:givenName Zachary Z.
111 rdf:type schema:Person
112 N90a12a4cfe104a5bb0079dc9d045348c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name DNA
114 rdf:type schema:DefinedTerm
115 N911bd26b5d7947cc85d117f2dee2504b schema:name nlm_unique_id
116 schema:value 0410462
117 rdf:type schema:PropertyValue
118 N98f28a53d2bf4bde9dc801fb13f08db5 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N9db5390d11864ea4ae7bdc09aa6bb0f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Escherichia coli
122 rdf:type schema:DefinedTerm
123 Na70a314c45084d458584a0cdf9cafe53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genome, Bacterial
125 rdf:type schema:DefinedTerm
126 Na86a5bef777d441082c9c10db7a6ba8a schema:issueNumber 7257
127 rdf:type schema:PublicationIssue
128 Nbb14da0653f54fa8872112a0725295e4 schema:name doi
129 schema:value 10.1038/nature08187
130 rdf:type schema:PropertyValue
131 Nc2b14bddcf0545458b36549ac6cffcec schema:name dimensions_id
132 schema:value pub.1004117037
133 rdf:type schema:PropertyValue
134 Ndb384228146f4e70beae858bca0e783a schema:name pubmed_id
135 schema:value 19633652
136 rdf:type schema:PropertyValue
137 Ne0e2a70197724f9bae02f32bc1a71617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Carotenoids
139 rdf:type schema:DefinedTerm
140 Nf58195e56d1344dead1b823612cf5ddb schema:volumeNumber 460
141 rdf:type schema:PublicationVolume
142 Nf917363a79a5420a861b9c5e1fe372c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Pentosephosphates
144 rdf:type schema:DefinedTerm
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
149 schema:name Genetics
150 rdf:type schema:DefinedTerm
151 sg:grant.2355510 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08187
152 rdf:type schema:MonetaryGrant
153 sg:journal.1018957 schema:issn 0090-0028
154 1476-4687
155 schema:name Nature
156 rdf:type schema:Periodical
157 sg:person.01001377715.74 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
158 schema:familyName Xu
159 schema:givenName George
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001377715.74
161 rdf:type schema:Person
162 sg:person.01074012745.57 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
163 schema:familyName Forest
164 schema:givenName Craig R.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074012745.57
166 rdf:type schema:Person
167 sg:person.01111765215.26 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
168 schema:familyName Wang
169 schema:givenName Harris H.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111765215.26
171 rdf:type schema:Person
172 sg:person.01115626315.03 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
173 schema:familyName Church
174 schema:givenName George M.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
176 rdf:type schema:Person
177 sg:person.0650377331.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
178 schema:familyName Isaacs
179 schema:givenName Farren J.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650377331.29
181 rdf:type schema:Person
182 sg:person.0775536615.19 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
183 schema:familyName Carr
184 schema:givenName Peter A.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775536615.19
186 rdf:type schema:Person
187 sg:pub.10.1038/21395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050594065
188 https://doi.org/10.1038/21395
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/2417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783524
191 https://doi.org/10.1038/2417
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/34663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002810105
194 https://doi.org/10.1038/34663
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/346818a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479478
197 https://doi.org/10.1038/346818a0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/415644a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762476
200 https://doi.org/10.1038/415644a
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature03151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700485
203 https://doi.org/10.1038/nature03151
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nbt1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030303005
206 https://doi.org/10.1038/nbt1083
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nbt1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026689119
209 https://doi.org/10.1038/nbt1226
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nprot.2008.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015284867
212 https://doi.org/10.1038/nprot.2008.227
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nrd1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006425891
215 https://doi.org/10.1038/nrd1256
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nrg1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008567554
218 https://doi.org/10.1038/nrg1088
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/1097-0290(20000220)72:4<408::aid-bit1003>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803217
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/bit.20539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300979
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.tig.2004.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495321
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ymben.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649161
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ymben.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016352117
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ymben.2007.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049291807
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1021/bp000137t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048164162
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.0709089105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039318416
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.100127597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006161022
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.121164898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034129502
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1073/pnas.2434959100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779710
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/22.23.4953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004183838
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gkh881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021511879
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gki591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005375442
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1101/gr.2.1.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600302
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1105/tpc.6.8.1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007462489
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.1093857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449306
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/science.1107851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032827529
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.1151721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412636
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2144/05386rr02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097101
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2307/3869889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070467849
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
265 schema:name Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
266 The Center for Bits and Atoms,
267 rdf:type schema:Organization
268 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
269 schema:name George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
272 schema:name Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
273 Harvard College, Cambridge, Massachusetts 02138, USA
274 Program in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
275 Program in Medical Engineering Medical Physics, Harvard-MIT Division of Health Sciences and Technology,
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...