Self-assembly of DNA into nanoscale three-dimensional shapes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05

AUTHORS

Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, William M. Shih

ABSTRACT

Molecular self-assembly offers a 'bottom-up' route to fabrication with subnanometre precision of complex structures from simple components. DNA has proved to be a versatile building block for programmable construction of such objects, including two-dimensional crystals, nanotubes, and three-dimensional wireframe nanopolyhedra. Templated self-assembly of DNA into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase 'scaffold strand' that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide 'staple strands'. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes-monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross-with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometre scale. More... »

PAGES

414

Journal

TITLE

Nature

ISSUE

7245

VOLUME

459

Author Affiliations

Related Patents

  • Engineering Dna Assembly In Vivo And Methods Of Making And Using The Reverse Transcriptase Technology
  • High-Throughput And Highly Multiplexed Imaging With Programmable Nucleic Acid Probes
  • Biomolecular Self-Assembly
  • Pkr Activation Via Hybridization Chain Reaction
  • Engineered Lectin Oligomers With Antiviral Activity
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Rna Nanoparticles And Methods Of Use
  • Nanocrystals Containing Cdte Core With Cds And Zns Coatings
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Self-Assembly Of Dna Origami: A New Diganostic Tool
  • Compositions And Methods Relating To Complex Nucleic Acid Nanostructures
  • Triggered Molecular Geometry Based Bioimaging Probes
  • Nucleic Acid-Based Linkers For Detecting And Measuring Interactions
  • A Preparation Method For A Dna Origami Based Carrier System
  • Small Conditional Rnas
  • Nucleic Acid Nanostructure Barcode Probes
  • Nanopore Functionality Control
  • Self-Assembly Of Dna Origami: A New Diagnostic Tool
  • Versatile Nucleic Acid Hairpin Motif For Programming Biomolecular Self-Assembly Pathways
  • Nucleic Acid Nanostructure Barcode Probes
  • Method And Materials For The Cooperative Hybridization Of Oligonucleotides
  • Non-Immunogenic And Nuclease Resistant Nucleic Acid Origami Devices And Compositions Thereof
  • Device For Detecting Distance Between E.G. Cell Components Of Living Cell, Has Red, Yellow And Green Fluorophores Arranged On Element, And Multiple Acceptors Arranged At Another Element, Where Elements Comprise Dna Or Double-Stranded Dna
  • Nucleic Acid Nanostructure Barcode Probes
  • Compositions And Methods For Polynucleotide Sequencing
  • Nucleic Acid Nanotube Liquid Crystals
  • Dna-Linked Nanoparticle Building Blocks For Nanostructure Assembly And Methods Of Producing The Same
  • Device For Detecting A Path Variable
  • Self-Assembled Polynucleotide Structure
  • Spatial Sequestration Of Dynamic Nucleic Acid Circuits
  • Compositions And Methods For Self-Assembly Of Polymers With Complementary Macroscopic And Microscopic Scale Units
  • Hybridization Chain Reaction Amplification For In Situ Imaging
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Molecular Identification With Sub-Nanometer Localization Accuracy
  • Method For Forming Nanoparticles Having Predetermined Shapes
  • High-Throughput Structure Determination Using Nucleic Acid Calipers
  • Nucleic Acid Based Nanopores Or Transmembrane Channels And Their Uses
  • Device For Detecting Force To E.G. Test Performance Of Dna-Driven Micro-Motor Devices, Has Detector Detecting Cooperation Of Fluorophore With Acceptor So As To Determine Indicator For Relative Position Of Two Lever-Shaped Elements
  • Compositions And Methods Relating To Nucleic Acid Nano- And Micro-Technology
  • Triggered Rnai
  • Selective Nucleic Acid Amplification From Nucleic Acid Pools
  • Lipid-Coated Nucleic Acid Nanostructures Of Defined Shape
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature08016

    DOI

    http://dx.doi.org/10.1038/nature08016

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000109646

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19458720


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron, Transmission", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Douglas", 
            "givenName": "Shawn M.", 
            "id": "sg:person.01024077562.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024077562.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dietz", 
            "givenName": "Hendrik", 
            "id": "sg:person.0703537216.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703537216.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liedl", 
            "givenName": "Tim", 
            "id": "sg:person.01260767137.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260767137.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f6gberg", 
            "givenName": "Bj\u00f6rn", 
            "id": "sg:person.01304443764.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304443764.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graf", 
            "givenName": "Franziska", 
            "id": "sg:person.01254554562.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254554562.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shih", 
            "givenName": "William M.", 
            "id": "sg:person.0627153064.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627153064.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cplett.2006.05.120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001628535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(82)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002849846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bip.20602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004782374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0700930104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005549896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0305860101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005727634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1070821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005920915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1157312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009289125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010497244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1120367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011693890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015431161", 
              "https://doi.org/10.1038/28998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015431161", 
              "https://doi.org/10.1038/28998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja8030196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020370839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja8030196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020370839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja960162o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022248208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja960162o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022248208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1032954100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022757322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050084f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025010039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050084f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025010039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1431927696210438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026243618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1431927696210438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026243618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028635122", 
              "https://doi.org/10.1038/nature04586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028635122", 
              "https://doi.org/10.1038/nature04586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028635122", 
              "https://doi.org/10.1038/nature04586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033919453", 
              "https://doi.org/10.1038/nature01406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033919453", 
              "https://doi.org/10.1038/nature01406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350631a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034775610", 
              "https://doi.org/10.1038/350631a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bip.20627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039944330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656204", 
              "https://doi.org/10.1038/nature06597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0803841105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041363945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/15.14.5765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044038504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1089389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047702592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(81)90099-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051227251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00064a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055159372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00084a006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055705408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1962191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062515366"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-05", 
        "datePublishedReg": "2009-05-01", 
        "description": "Molecular self-assembly offers a 'bottom-up' route to fabrication with subnanometre precision of complex structures from simple components. DNA has proved to be a versatile building block for programmable construction of such objects, including two-dimensional crystals, nanotubes, and three-dimensional wireframe nanopolyhedra. Templated self-assembly of DNA into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase 'scaffold strand' that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide 'staple strands'. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes-monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross-with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometre scale.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature08016", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2355291", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7245", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "459"
          }
        ], 
        "name": "Self-assembly of DNA into nanoscale three-dimensional shapes", 
        "pagination": "414", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0085a01913aee5957f77aec58671610b8d0324ed558e3cf55e3a086207896b14"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19458720"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature08016"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000109646"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature08016", 
          "https://app.dimensions.ai/details/publication/pub.1000109646"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109484_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature08016"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature08016'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature08016'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature08016'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature08016'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      63 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature08016 schema:about N3aa5744ad05a431bafa0329605f4ee7b
    2 N583b8cda99814b53b7937868904d5806
    3 N979ab12f77da4ce5acdb5f61c60b0a10
    4 Na67383c5b4554f048e4b92ce55277633
    5 Nd3eedf3ad5c9444f89e0d3d4e5b2716b
    6 anzsrc-for:03
    7 anzsrc-for:0303
    8 schema:author Nd1bcefef5ce143aaaf9704bfd1254c16
    9 schema:citation sg:pub.10.1038/28998
    10 sg:pub.10.1038/350631a0
    11 sg:pub.10.1038/nature01406
    12 sg:pub.10.1038/nature02307
    13 sg:pub.10.1038/nature04586
    14 sg:pub.10.1038/nature06597
    15 https://doi.org/10.1002/bip.20602
    16 https://doi.org/10.1002/bip.20627
    17 https://doi.org/10.1016/0022-2836(81)90099-1
    18 https://doi.org/10.1016/0022-5193(82)90002-9
    19 https://doi.org/10.1016/j.cplett.2006.05.120
    20 https://doi.org/10.1017/s1431927696210438
    21 https://doi.org/10.1021/bi00064a003
    22 https://doi.org/10.1021/ja00084a006
    23 https://doi.org/10.1021/ja044319l
    24 https://doi.org/10.1021/ja8030196
    25 https://doi.org/10.1021/ja960162o
    26 https://doi.org/10.1021/nl050084f
    27 https://doi.org/10.1073/pnas.0305860101
    28 https://doi.org/10.1073/pnas.0700930104
    29 https://doi.org/10.1073/pnas.0803841105
    30 https://doi.org/10.1073/pnas.1032954100
    31 https://doi.org/10.1093/nar/15.14.5765
    32 https://doi.org/10.1093/nar/gkp436
    33 https://doi.org/10.1126/science.1070821
    34 https://doi.org/10.1126/science.1089389
    35 https://doi.org/10.1126/science.1120367
    36 https://doi.org/10.1126/science.1157312
    37 https://doi.org/10.1126/science.1962191
    38 schema:datePublished 2009-05
    39 schema:datePublishedReg 2009-05-01
    40 schema:description Molecular self-assembly offers a 'bottom-up' route to fabrication with subnanometre precision of complex structures from simple components. DNA has proved to be a versatile building block for programmable construction of such objects, including two-dimensional crystals, nanotubes, and three-dimensional wireframe nanopolyhedra. Templated self-assembly of DNA into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase 'scaffold strand' that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide 'staple strands'. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes-monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross-with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometre scale.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N04b7afd690094eb28f92a89398f5be1a
    45 N336b0c9deaaf4d8e8106cd52be5dafb6
    46 sg:journal.1018957
    47 schema:name Self-assembly of DNA into nanoscale three-dimensional shapes
    48 schema:pagination 414
    49 schema:productId N0ccf89533c78441aaea47bd814015662
    50 N2defdda8b972430a9b29e6827dbea221
    51 N41b6b02b3d764e078babe0e05f0cb926
    52 Na2052cbc044d455f8f05baedfd6a580c
    53 Ne76b5436eba24ae08ac977e810436939
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000109646
    55 https://doi.org/10.1038/nature08016
    56 schema:sdDatePublished 2019-04-11T09:17
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Nda048822c3d54e4385ea37fb15a5c41f
    59 schema:url https://www.nature.com/articles/nature08016
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N04b7afd690094eb28f92a89398f5be1a schema:issueNumber 7245
    64 rdf:type schema:PublicationIssue
    65 N0ccf89533c78441aaea47bd814015662 schema:name pubmed_id
    66 schema:value 19458720
    67 rdf:type schema:PropertyValue
    68 N2defdda8b972430a9b29e6827dbea221 schema:name readcube_id
    69 schema:value 0085a01913aee5957f77aec58671610b8d0324ed558e3cf55e3a086207896b14
    70 rdf:type schema:PropertyValue
    71 N2f3aa5167e164be1bd25e899fe71ad9b rdf:first sg:person.0703537216.70
    72 rdf:rest N6fc0a7a39d4345d6b1d14de752581f2b
    73 N336b0c9deaaf4d8e8106cd52be5dafb6 schema:volumeNumber 459
    74 rdf:type schema:PublicationVolume
    75 N3aa5744ad05a431bafa0329605f4ee7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Nucleic Acid Conformation
    77 rdf:type schema:DefinedTerm
    78 N41b6b02b3d764e078babe0e05f0cb926 schema:name nlm_unique_id
    79 schema:value 0410462
    80 rdf:type schema:PropertyValue
    81 N583b8cda99814b53b7937868904d5806 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Nanotechnology
    83 rdf:type schema:DefinedTerm
    84 N67a1ead482dc4a189b90ab1fe4fbc8bc rdf:first sg:person.01304443764.18
    85 rdf:rest Nc95d5c35af9f40378848b30972e8c134
    86 N6fc0a7a39d4345d6b1d14de752581f2b rdf:first sg:person.01260767137.91
    87 rdf:rest N67a1ead482dc4a189b90ab1fe4fbc8bc
    88 N92fa41a3d98846cfa311df4caf77d7f0 rdf:first sg:person.0627153064.21
    89 rdf:rest rdf:nil
    90 N979ab12f77da4ce5acdb5f61c60b0a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA
    92 rdf:type schema:DefinedTerm
    93 Na2052cbc044d455f8f05baedfd6a580c schema:name dimensions_id
    94 schema:value pub.1000109646
    95 rdf:type schema:PropertyValue
    96 Na67383c5b4554f048e4b92ce55277633 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Microscopy, Electron, Transmission
    98 rdf:type schema:DefinedTerm
    99 Nc95d5c35af9f40378848b30972e8c134 rdf:first sg:person.01254554562.22
    100 rdf:rest N92fa41a3d98846cfa311df4caf77d7f0
    101 Nd1bcefef5ce143aaaf9704bfd1254c16 rdf:first sg:person.01024077562.66
    102 rdf:rest N2f3aa5167e164be1bd25e899fe71ad9b
    103 Nd3eedf3ad5c9444f89e0d3d4e5b2716b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Nanostructures
    105 rdf:type schema:DefinedTerm
    106 Nda048822c3d54e4385ea37fb15a5c41f schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Ne76b5436eba24ae08ac977e810436939 schema:name doi
    109 schema:value 10.1038/nature08016
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Chemical Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Macromolecular and Materials Chemistry
    116 rdf:type schema:DefinedTerm
    117 sg:grant.2355291 http://pending.schema.org/fundedItem sg:pub.10.1038/nature08016
    118 rdf:type schema:MonetaryGrant
    119 sg:journal.1018957 schema:issn 0090-0028
    120 1476-4687
    121 schema:name Nature
    122 rdf:type schema:Periodical
    123 sg:person.01024077562.66 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    124 schema:familyName Douglas
    125 schema:givenName Shawn M.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024077562.66
    127 rdf:type schema:Person
    128 sg:person.01254554562.22 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    129 schema:familyName Graf
    130 schema:givenName Franziska
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254554562.22
    132 rdf:type schema:Person
    133 sg:person.01260767137.91 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    134 schema:familyName Liedl
    135 schema:givenName Tim
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260767137.91
    137 rdf:type schema:Person
    138 sg:person.01304443764.18 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    139 schema:familyName Högberg
    140 schema:givenName Björn
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304443764.18
    142 rdf:type schema:Person
    143 sg:person.0627153064.21 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    144 schema:familyName Shih
    145 schema:givenName William M.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627153064.21
    147 rdf:type schema:Person
    148 sg:person.0703537216.70 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    149 schema:familyName Dietz
    150 schema:givenName Hendrik
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703537216.70
    152 rdf:type schema:Person
    153 sg:pub.10.1038/28998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015431161
    154 https://doi.org/10.1038/28998
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/350631a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034775610
    157 https://doi.org/10.1038/350631a0
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature01406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033919453
    160 https://doi.org/10.1038/nature01406
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nature02307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024204443
    163 https://doi.org/10.1038/nature02307
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
    166 https://doi.org/10.1038/nature04586
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nature06597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656204
    169 https://doi.org/10.1038/nature06597
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/bip.20602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004782374
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1002/bip.20627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039944330
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/0022-2836(81)90099-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051227251
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/0022-5193(82)90002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002849846
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.cplett.2006.05.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001628535
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1017/s1431927696210438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026243618
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/bi00064a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159372
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/ja00084a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705408
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/ja044319l schema:sameAs https://app.dimensions.ai/details/publication/pub.1050478235
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/ja8030196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020370839
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/ja960162o schema:sameAs https://app.dimensions.ai/details/publication/pub.1022248208
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1021/nl050084f schema:sameAs https://app.dimensions.ai/details/publication/pub.1025010039
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1073/pnas.0305860101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005727634
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1073/pnas.0700930104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005549896
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1073/pnas.0803841105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041363945
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.1032954100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022757322
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1093/nar/15.14.5765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044038504
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/nar/gkp436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010497244
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1126/science.1070821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005920915
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1126/science.1089389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047702592
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1120367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011693890
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.1157312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009289125
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/science.1962191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062515366
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    218 schema:name Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
    219 Department of Cancer Biology, Dana-Farber Cancer Institute
    220 Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA.
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...