Narrow graphene nanoribbons from carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04-16

AUTHORS

Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov, Hongjie Dai

ABSTRACT

Graphene nanoribbons (GNRs) are materials with properties distinct from those of other carbon allotropes. The all-semiconducting nature of sub-10-nm GNRs could bypass the problem of the extreme chirality dependence of the metal or semiconductor nature of carbon nanotubes (CNTs) in future electronics. Currently, making GNRs using lithographic, chemical or sonochemical methods is challenging. It is difficult to obtain GNRs with smooth edges and controllable widths at high yields. Here we show an approach to making GNRs by unzipping multiwalled carbon nanotubes by plasma etching of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (10-20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration. More... »

PAGES

877

Journal

TITLE

Nature

ISSUE

7240

VOLUME

458

Author Affiliations

Related Patents

  • Method For Inserting Carbon Nanofillers Into A Metal Or Alloy
  • Thermoplastic And/Or Elastomeric Composite Material Containing Carbon Nanotubes And Graphenes
  • Graphene Nanoribbons Derived From Poly(Phenylene Ethynylene) Polymer, Methods Of Making Same, And Uses Thereof
  • Methods For Manufacturing Nonplanar Graphite-Based Devices Having Multiple Bandgaps
  • Solvent-Based Methods For Production Of Graphene Nanoribbons
  • Fabrication Of Biscrolled Fiber Using Carbon Nanotube Sheet
  • Graphene Resonant Tunneling Transistor
  • Masterbatch Of Carbon Nanotubes And Curing Agent For Thermosetting Resins
  • Production Of Graphene Nanoplatelets By Oxidative Anhydrous Acidic Media
  • Nonplanar Graphite-Based Devices Having Multiple Bandgaps
  • Production Of Graphene From Metal Alkoxide
  • Fabrication Of Biscrolled Fiber Using Carbon Nanotube Sheet
  • Synthesis Of Magnetic Carbon Nanoribbons And Magnetic Functionalized Carbon Nanoribbons
  • Fabrication Of Graphene Nanoribbons And Nanowires Using A Meniscus As An Etch Mask
  • Graphene Nanoribbons, Methods Of Making Same, And Uses Thereof
  • Graphene Nanomesh And Method Of Making The Same
  • Sub-10 Nm Graphene Nanoribbon Lattices
  • Graphene-Encapsulated Nanoparticle-Based Biosensor For The Selective Detection Of Biomarkers
  • Novel Method For Producing High-Carbon Materials And High-Carbon Material Produced
  • Semiconductor Device
  • Fabrication Of Biscrolled Fiber Using Carbon Nanotube Sheet
  • Method Of Manufacturing A Monolayer Graphene Photodetector And Monolayer Graphene Photodetector
  • Method For Manufacturing A Carbon Fibre, Precursor Material Used By The Method And Carbon Fibre Obtained
  • Organic Material-Based Graphitic Material
  • Thermoplastic And/Or Elastomeric Composite Based On Carbon Nanotubes And Graphenes
  • Graphene Nanoribbons Prepared From Carbon Nanotubes Via Alkali Metal Exposure
  • Methods Of Fabrication Of Graphene Nanoribbons
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature07919

    DOI

    http://dx.doi.org/10.1038/nature07919

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023528767

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19370031


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiao", 
            "givenName": "Liying", 
            "id": "sg:person.011563037375.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Li", 
            "id": "sg:person.01235737515.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235737515.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xinran", 
            "id": "sg:person.01014575676.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Diankov", 
            "givenName": "Georgi", 
            "id": "sg:person.01327546360.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327546360.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dai", 
            "givenName": "Hongjie", 
            "id": "sg:person.01320646106.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-008-8043-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003787824", 
              "https://doi.org/10.1007/s12274-008-8043-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005726293", 
              "https://doi.org/10.1038/nnano.2008.149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2789673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013337495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061702a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013742583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061702a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013742583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1150878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1369-7021(08)70021-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019558196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021016859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-6028(01)01558-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022877866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.161409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029307085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.161409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029307085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1125925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040736915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl080241l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041396528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl080241l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041396528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.186801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047079515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.186801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047079515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-008-8036-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047177326", 
              "https://doi.org/10.1007/s12274-008-8036-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja805070b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049332508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja805070b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049332508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12274-008-8020-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049726473", 
              "https://doi.org/10.1007/s12274-008-8020-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl080583r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049986580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl080583r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049986580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0617033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052359345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0617033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052359345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp802713j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056108047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp802713j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056108047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.582629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062192676"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04-16", 
        "datePublishedReg": "2009-04-16", 
        "description": "Graphene nanoribbons (GNRs) are materials with properties distinct from those of other carbon allotropes. The all-semiconducting nature of sub-10-nm GNRs could bypass the problem of the extreme chirality dependence of the metal or semiconductor nature of carbon nanotubes (CNTs) in future electronics. Currently, making GNRs using lithographic, chemical or sonochemical methods is challenging. It is difficult to obtain GNRs with smooth edges and controllable widths at high yields. Here we show an approach to making GNRs by unzipping multiwalled carbon nanotubes by plasma etching of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (10-20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature07919", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7240", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "458"
          }
        ], 
        "name": "Narrow graphene nanoribbons from carbon nanotubes", 
        "pagination": "877", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7018f358825eaf3478d5104f01c41d784eb6275cfbfb211af78630f07c4696e2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19370031"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature07919"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023528767"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature07919", 
          "https://app.dimensions.ai/details/publication/pub.1023528767"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47975_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature07919"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07919'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07919'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07919'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07919'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      57 URIs      20 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature07919 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N44ecb30af1dc46dcbdd20bf599ff30e7
    4 schema:citation sg:pub.10.1007/s12274-008-8020-9
    5 sg:pub.10.1007/s12274-008-8036-1
    6 sg:pub.10.1007/s12274-008-8043-2
    7 sg:pub.10.1038/nature04233
    8 sg:pub.10.1038/nature04235
    9 sg:pub.10.1038/nmat1849
    10 sg:pub.10.1038/nnano.2008.149
    11 https://doi.org/10.1016/j.physe.2007.06.020
    12 https://doi.org/10.1016/s0039-6028(01)01558-8
    13 https://doi.org/10.1016/s1369-7021(08)70021-x
    14 https://doi.org/10.1021/ja805070b
    15 https://doi.org/10.1021/jp802713j
    16 https://doi.org/10.1021/nl061702a
    17 https://doi.org/10.1021/nl0617033
    18 https://doi.org/10.1021/nl080241l
    19 https://doi.org/10.1021/nl080583r
    20 https://doi.org/10.1021/nl801316d
    21 https://doi.org/10.1063/1.2789673
    22 https://doi.org/10.1103/physrevb.54.17954
    23 https://doi.org/10.1103/physrevb.78.161409
    24 https://doi.org/10.1103/physrevlett.100.206803
    25 https://doi.org/10.1103/physrevlett.97.187401
    26 https://doi.org/10.1103/physrevlett.97.216803
    27 https://doi.org/10.1103/physrevlett.98.206805
    28 https://doi.org/10.1103/physrevlett.99.186801
    29 https://doi.org/10.1116/1.582629
    30 https://doi.org/10.1126/science.1102896
    31 https://doi.org/10.1126/science.1125925
    32 https://doi.org/10.1126/science.1150878
    33 schema:datePublished 2009-04-16
    34 schema:datePublishedReg 2009-04-16
    35 schema:description Graphene nanoribbons (GNRs) are materials with properties distinct from those of other carbon allotropes. The all-semiconducting nature of sub-10-nm GNRs could bypass the problem of the extreme chirality dependence of the metal or semiconductor nature of carbon nanotubes (CNTs) in future electronics. Currently, making GNRs using lithographic, chemical or sonochemical methods is challenging. It is difficult to obtain GNRs with smooth edges and controllable widths at high yields. Here we show an approach to making GNRs by unzipping multiwalled carbon nanotubes by plasma etching of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (10-20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N52cc2b9c09a34074a01632cbf2037826
    40 N68ad79cfa02342bebf099411b62e17e6
    41 sg:journal.1018957
    42 schema:name Narrow graphene nanoribbons from carbon nanotubes
    43 schema:pagination 877
    44 schema:productId N988402788917428f9fd2d98684040112
    45 N9e36e40b28924771832a40fc78a9157d
    46 Na6390fce0fe941d2a35ffed7857ced27
    47 Ndc7b5a0300e04dc0b6069ea126d1217a
    48 Nf6ee542e94c147ff85a63161520a9423
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
    50 https://doi.org/10.1038/nature07919
    51 schema:sdDatePublished 2019-04-11T09:10
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nb261c13151b04bf4be37f6cd25dbece9
    54 schema:url https://www.nature.com/articles/nature07919
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N3253805d69774fc0a2894cbc765ae977 rdf:first sg:person.01327546360.88
    59 rdf:rest N6dd83264c73044f488030424cd9e1458
    60 N44ecb30af1dc46dcbdd20bf599ff30e7 rdf:first sg:person.011563037375.48
    61 rdf:rest Naa63a6cff0154addb31131923d12fa3d
    62 N52cc2b9c09a34074a01632cbf2037826 schema:volumeNumber 458
    63 rdf:type schema:PublicationVolume
    64 N68ad79cfa02342bebf099411b62e17e6 schema:issueNumber 7240
    65 rdf:type schema:PublicationIssue
    66 N6dd83264c73044f488030424cd9e1458 rdf:first sg:person.01320646106.00
    67 rdf:rest rdf:nil
    68 N988402788917428f9fd2d98684040112 schema:name doi
    69 schema:value 10.1038/nature07919
    70 rdf:type schema:PropertyValue
    71 N9e36e40b28924771832a40fc78a9157d schema:name readcube_id
    72 schema:value 7018f358825eaf3478d5104f01c41d784eb6275cfbfb211af78630f07c4696e2
    73 rdf:type schema:PropertyValue
    74 Na6390fce0fe941d2a35ffed7857ced27 schema:name nlm_unique_id
    75 schema:value 0410462
    76 rdf:type schema:PropertyValue
    77 Naa63a6cff0154addb31131923d12fa3d rdf:first sg:person.01235737515.37
    78 rdf:rest Nda6d2b376472488eb95dcd2abb835b8e
    79 Nb261c13151b04bf4be37f6cd25dbece9 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Nda6d2b376472488eb95dcd2abb835b8e rdf:first sg:person.01014575676.43
    82 rdf:rest N3253805d69774fc0a2894cbc765ae977
    83 Ndc7b5a0300e04dc0b6069ea126d1217a schema:name dimensions_id
    84 schema:value pub.1023528767
    85 rdf:type schema:PropertyValue
    86 Nf6ee542e94c147ff85a63161520a9423 schema:name pubmed_id
    87 schema:value 19370031
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Materials Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1018957 schema:issn 0090-0028
    96 1476-4687
    97 schema:name Nature
    98 rdf:type schema:Periodical
    99 sg:person.01014575676.43 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    100 schema:familyName Wang
    101 schema:givenName Xinran
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43
    103 rdf:type schema:Person
    104 sg:person.011563037375.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    105 schema:familyName Jiao
    106 schema:givenName Liying
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563037375.48
    108 rdf:type schema:Person
    109 sg:person.01235737515.37 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    110 schema:familyName Zhang
    111 schema:givenName Li
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235737515.37
    113 rdf:type schema:Person
    114 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    115 schema:familyName Dai
    116 schema:givenName Hongjie
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
    118 rdf:type schema:Person
    119 sg:person.01327546360.88 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    120 schema:familyName Diankov
    121 schema:givenName Georgi
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327546360.88
    123 rdf:type schema:Person
    124 sg:pub.10.1007/s12274-008-8020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726473
    125 https://doi.org/10.1007/s12274-008-8020-9
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s12274-008-8036-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047177326
    128 https://doi.org/10.1007/s12274-008-8036-1
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s12274-008-8043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003787824
    131 https://doi.org/10.1007/s12274-008-8043-2
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    134 https://doi.org/10.1038/nature04233
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    137 https://doi.org/10.1038/nature04235
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    140 https://doi.org/10.1038/nmat1849
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nnano.2008.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726293
    143 https://doi.org/10.1038/nnano.2008.149
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/s0039-6028(01)01558-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022877866
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s1369-7021(08)70021-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019558196
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/ja805070b schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332508
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/jp802713j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056108047
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/nl061702a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013742583
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1021/nl0617033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052359345
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1021/nl080241l schema:sameAs https://app.dimensions.ai/details/publication/pub.1041396528
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1021/nl080583r schema:sameAs https://app.dimensions.ai/details/publication/pub.1049986580
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1021/nl801316d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036027733
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1063/1.2789673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013337495
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.78.161409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029307085
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevlett.99.186801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047079515
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1116/1.582629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062192676
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    190 schema:name Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...