Electromotive force and huge magnetoresistance in magnetic tunnel junctions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03-26

AUTHORS

Pham Nam Hai, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes, Sadamichi Maekawa

ABSTRACT

The electromotive force (e.m.f.) predicted by Faraday's law reflects the forces acting on the charge, -e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10(2)-10(3) seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday's law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as 'spin batteries'. More... »

PAGES

489

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07879

DOI

http://dx.doi.org/10.1038/nature07879

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014026693

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19270681


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hai", 
        "givenName": "Pham Nam", 
        "id": "sg:person.0727462511.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727462511.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan", 
            "Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi 332-0012, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohya", 
        "givenName": "Shinobu", 
        "id": "sg:person.01341500257.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341500257.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan", 
            "Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi 332-0012, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Masaaki", 
        "id": "sg:person.010041676421.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041676421.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Physics Department, University of Miami, Coral Gables, Florida 33124, USA", 
            "TCM, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnes", 
        "givenName": "Stewart E.", 
        "id": "sg:person.0655533256.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655533256.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan", 
            "CREST, Japan Science and Technology Agency, Tokyo 100-0075, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maekawa", 
        "givenName": "Sadamichi", 
        "id": "sg:person.01325141510.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325141510.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.10.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002538605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2354036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010466364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/17/4/306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018989303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(95)90001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028787669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047761572", 
          "https://doi.org/10.1038/nmat1257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053403072", 
          "https://doi.org/10.1038/nmat1256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1506402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1852214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057827997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2739215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057861991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.15553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.15553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5157.413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.44.l948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063076118"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03-26", 
    "datePublishedReg": "2009-03-26", 
    "description": "The electromotive force (e.m.f.) predicted by Faraday's law reflects the forces acting on the charge, -e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10(2)-10(3) seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday's law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as 'spin batteries'.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07879", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6537063", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6000033", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6536912", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5948257", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7237", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "458"
      }
    ], 
    "name": "Electromotive force and huge magnetoresistance in magnetic tunnel junctions", 
    "pagination": "489", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42d1c73d0be42c6b17c63bd81d0a17fa05f4e5100d9a020a8ce98a0b7df7fbd9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19270681"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07879"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014026693"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07879", 
      "https://app.dimensions.ai/details/publication/pub.1014026693"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47989_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07879"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07879'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07879'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07879'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07879'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      46 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07879 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Ncf47d5dbfdbc4af6a0adf47a96989944
4 schema:citation sg:pub.10.1038/nmat1256
5 sg:pub.10.1038/nmat1257
6 https://doi.org/10.1016/0304-8853(95)90001-2
7 https://doi.org/10.1016/j.jmmm.2006.10.944
8 https://doi.org/10.1063/1.112831
9 https://doi.org/10.1063/1.1506402
10 https://doi.org/10.1063/1.1852214
11 https://doi.org/10.1063/1.2354036
12 https://doi.org/10.1063/1.2739215
13 https://doi.org/10.1088/0268-1242/17/4/306
14 https://doi.org/10.1103/physrevb.39.4828
15 https://doi.org/10.1103/physrevb.62.15553
16 https://doi.org/10.1103/physrevlett.59.109
17 https://doi.org/10.1103/physrevlett.61.2472
18 https://doi.org/10.1103/physrevlett.74.3273
19 https://doi.org/10.1103/physrevlett.98.246601
20 https://doi.org/10.1126/science.264.5157.413
21 https://doi.org/10.1143/jjap.44.l948
22 schema:datePublished 2009-03-26
23 schema:datePublishedReg 2009-03-26
24 schema:description The electromotive force (e.m.f.) predicted by Faraday's law reflects the forces acting on the charge, -e, of an electron moving through a device or circuit, and is proportional to the time derivative of the magnetic field. This conventional e.m.f. is usually absent for stationary circuits and static magnetic fields. There are also forces that act on the spin of an electron; it has been recently predicted that, for circuits that are in part composed of ferromagnetic materials, there arises an e.m.f. of spin origin even for a static magnetic field. This e.m.f. can be attributed to a time-varying magnetization of the host material, such as the motion of magnetic domains in a static magnetic field, and reflects the conversion of magnetic to electrical energy. Here we show that such an e.m.f. can indeed be induced by a static magnetic field in magnetic tunnel junctions containing zinc-blende-structured MnAs quantum nanomagnets. The observed e.m.f. operates on a timescale of approximately 10(2)-10(3) seconds and results from the conversion of the magnetic energy of the superparamagnetic MnAs nanomagnets into electrical energy when these magnets undergo magnetic quantum tunnelling. As a consequence, a huge magnetoresistance of up to 100,000 per cent is observed for certain bias voltages. Our results strongly support the contention that, in magnetic nanostructures, Faraday's law of induction must be generalized to account for forces of purely spin origin. The huge magnetoresistance and e.m.f. may find potential applications in high sensitivity magnetic sensors, as well as in new active devices such as 'spin batteries'.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N0862348e739b43e582db9743295bf687
29 N603f754fea34494cab3f182dae813a7e
30 sg:journal.1018957
31 schema:name Electromotive force and huge magnetoresistance in magnetic tunnel junctions
32 schema:pagination 489
33 schema:productId N2f22327860154b2785a757cb37a230ef
34 N33af6bcc8eb84a71a9146de8f020258c
35 N8ba87434a3614a58a1a2368f3daacf50
36 Na50e173ff271457fbb74bdf962d7e9e6
37 Necdc1f7e539149cdb6bc710041df598a
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014026693
39 https://doi.org/10.1038/nature07879
40 schema:sdDatePublished 2019-04-11T09:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nbf23ac7ce1b3404d80e8d46c39dca343
43 schema:url https://www.nature.com/articles/nature07879
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0862348e739b43e582db9743295bf687 schema:issueNumber 7237
48 rdf:type schema:PublicationIssue
49 N1f15400a631f4f67a17fdaef37bfc9fd rdf:first sg:person.0655533256.64
50 rdf:rest Nd979700827b54afbb8efb12703dc8d2a
51 N25dd1d1a380c49f5bbd76744da22913c rdf:first sg:person.010041676421.55
52 rdf:rest N1f15400a631f4f67a17fdaef37bfc9fd
53 N2f22327860154b2785a757cb37a230ef schema:name pubmed_id
54 schema:value 19270681
55 rdf:type schema:PropertyValue
56 N33af6bcc8eb84a71a9146de8f020258c schema:name doi
57 schema:value 10.1038/nature07879
58 rdf:type schema:PropertyValue
59 N603f754fea34494cab3f182dae813a7e schema:volumeNumber 458
60 rdf:type schema:PublicationVolume
61 N68d0ebe337044a4c879a8393e61a5b19 rdf:first sg:person.01341500257.74
62 rdf:rest N25dd1d1a380c49f5bbd76744da22913c
63 N8ba87434a3614a58a1a2368f3daacf50 schema:name nlm_unique_id
64 schema:value 0410462
65 rdf:type schema:PropertyValue
66 Na50e173ff271457fbb74bdf962d7e9e6 schema:name readcube_id
67 schema:value 42d1c73d0be42c6b17c63bd81d0a17fa05f4e5100d9a020a8ce98a0b7df7fbd9
68 rdf:type schema:PropertyValue
69 Nbf23ac7ce1b3404d80e8d46c39dca343 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ncf47d5dbfdbc4af6a0adf47a96989944 rdf:first sg:person.0727462511.92
72 rdf:rest N68d0ebe337044a4c879a8393e61a5b19
73 Nd979700827b54afbb8efb12703dc8d2a rdf:first sg:person.01325141510.10
74 rdf:rest rdf:nil
75 Necdc1f7e539149cdb6bc710041df598a schema:name dimensions_id
76 schema:value pub.1014026693
77 rdf:type schema:PropertyValue
78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
82 schema:name Condensed Matter Physics
83 rdf:type schema:DefinedTerm
84 sg:grant.5948257 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07879
85 rdf:type schema:MonetaryGrant
86 sg:grant.6000033 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07879
87 rdf:type schema:MonetaryGrant
88 sg:grant.6536912 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07879
89 rdf:type schema:MonetaryGrant
90 sg:grant.6537063 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07879
91 rdf:type schema:MonetaryGrant
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.010041676421.55 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
97 schema:familyName Tanaka
98 schema:givenName Masaaki
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041676421.55
100 rdf:type schema:Person
101 sg:person.01325141510.10 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
102 schema:familyName Maekawa
103 schema:givenName Sadamichi
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325141510.10
105 rdf:type schema:Person
106 sg:person.01341500257.74 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
107 schema:familyName Ohya
108 schema:givenName Shinobu
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341500257.74
110 rdf:type schema:Person
111 sg:person.0655533256.64 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
112 schema:familyName Barnes
113 schema:givenName Stewart E.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655533256.64
115 rdf:type schema:Person
116 sg:person.0727462511.92 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
117 schema:familyName Hai
118 schema:givenName Pham Nam
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727462511.92
120 rdf:type schema:Person
121 sg:pub.10.1038/nmat1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403072
122 https://doi.org/10.1038/nmat1256
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047761572
125 https://doi.org/10.1038/nmat1257
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0304-8853(95)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787669
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jmmm.2006.10.944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002538605
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.112831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660384
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1506402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713981
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.1852214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827997
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.2354036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010466364
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.2739215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057861991
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0268-1242/17/4/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018989303
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.39.4828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036933778
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.62.15553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597223
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.59.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795495
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.74.3273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810846
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.98.246601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834184
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.264.5157.413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548008
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1143/jjap.44.l948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063076118
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
160 schema:name Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
163 schema:name CREST, Japan Science and Technology Agency, Tokyo 100-0075, Japan
164 Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
165 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
166 Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi 332-0012, Japan
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
169 schema:name Physics Department, University of Miami, Coral Gables, Florida 33124, USA
170 TCM, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...