Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04-16

AUTHORS

Dmitry V. Kosynkin, Amanda L. Higginbotham, Alexander Sinitskii, Jay R. Lomeda, Ayrat Dimiev, B. Katherine Price, James M. Tour

ABSTRACT

Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required. More... »

PAGES

872

Journal

TITLE

Nature

ISSUE

7240

VOLUME

458

Author Affiliations

Related Patents

  • Purification Process For Graphene Nanoribbons
  • Solvent-Based Methods For Production Of Graphene Nanoribbons
  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Graphene Structure And Method Of Manufacturing The Graphene Structure, And Graphene Device And Method Of Manufacturing The Graphene Device
  • Method For Preparing Graphene Ribbons
  • Production Of Graphene From Metal Alkoxide
  • Graphene Resonant Tunneling Transistor
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Production Of Graphene Nanoplatelets By Oxidative Anhydrous Acidic Media
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Capacitor With Parallel Nanotubes
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Degradation Of Nanomaterials
  • Sheath-Core Fibers For Superelastic Electronics, Sensors, And Muscles
  • Solvent-Based Methods For Production Of Graphene Nanoribbons
  • Laser-Induced Graphene Scrolls (Ligs) Materials
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Sub-10 Nm Graphene Nanoribbon Lattices
  • Oxidized Graphene Nano-Ribbon/Polymer Composite Film And Preparation Method Therefor
  • Method Of Manufacturing A Monolayer Graphene Photodetector And Monolayer Graphene Photodetector
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Graphene Structure And Method Of Manufacturing The Graphene Structure, And Graphene Device And Method Of Manufacturing The Graphene Device
  • Organic Material-Based Graphitic Material
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Graphene Nanoribbons Prepared From Carbon Nanotubes Via Alkali Metal Exposure
  • Purification Process For Graphene Nanoribbons
  • Method For Preparing Graphene Ribbons
  • Electrochemical Process For Synthesis Of Graphene
  • Graphene Nanoribbon Precursors And Monomers Suitable For Preparation Thereof
  • Electrochemical Process For Synthesis Of Graphene
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature07872

    DOI

    http://dx.doi.org/10.1038/nature07872

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033318923

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19370030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosynkin", 
            "givenName": "Dmitry V.", 
            "id": "sg:person.01154712521.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154712521.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Higginbotham", 
            "givenName": "Amanda L.", 
            "id": "sg:person.0600301160.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600301160.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinitskii", 
            "givenName": "Alexander", 
            "id": "sg:person.0646414360.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646414360.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lomeda", 
            "givenName": "Jay R.", 
            "id": "sg:person.01303536270.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303536270.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dimiev", 
            "givenName": "Ayrat", 
            "id": "sg:person.0632671550.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632671550.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Price", 
            "givenName": "B. Katherine", 
            "id": "sg:person.01030756160.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030756160.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rice University", 
              "id": "https://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Department of Chemistry,", 
                "Department of Mechanical Engineering and Materials Science,", 
                "Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tour", 
            "givenName": "James M.", 
            "id": "sg:person.01275626274.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275626274.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2007.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007174267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b512799h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016221609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1150878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja710234t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019245124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja710234t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019245124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021016859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la026525h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021314538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la026525h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021314538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062132h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022488808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062132h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022488808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027154969", 
              "https://doi.org/10.1038/nnano.2008.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/v69-526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031508018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp060936f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033316831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp060936f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033316831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpcs.2006.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036155590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4526(02)00999-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045746402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00394a037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055728956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060832210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060832210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ted.2007.891872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061592414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04-16", 
        "datePublishedReg": "2009-04-16", 
        "description": "Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature07872", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7240", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "458"
          }
        ], 
        "name": "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", 
        "pagination": "872", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9eb9d26aba083568338bf3bd5dd64af1881932c30277ef400f35cdddbaad74ca"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19370030"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature07872"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033318923"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature07872", 
          "https://app.dimensions.ai/details/publication/pub.1033318923"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47985_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature07872"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07872'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      57 URIs      20 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature07872 schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author Na49ef1f48ab942d199d379da0daf53e1
    4 schema:citation sg:pub.10.1038/441818a
    5 sg:pub.10.1038/nature04233
    6 sg:pub.10.1038/nature04235
    7 sg:pub.10.1038/nature05180
    8 sg:pub.10.1038/nmat1849
    9 sg:pub.10.1038/nnano.2007.451
    10 sg:pub.10.1038/nnano.2008.83
    11 https://doi.org/10.1016/j.carbon.2007.02.034
    12 https://doi.org/10.1016/j.jpcs.2006.05.010
    13 https://doi.org/10.1016/j.physe.2007.06.020
    14 https://doi.org/10.1016/s0921-4526(02)00999-7
    15 https://doi.org/10.1021/ja00394a037
    16 https://doi.org/10.1021/ja01539a017
    17 https://doi.org/10.1021/ja710234t
    18 https://doi.org/10.1021/jp060936f
    19 https://doi.org/10.1021/jp9731821
    20 https://doi.org/10.1021/la026525h
    21 https://doi.org/10.1021/nl062132h
    22 https://doi.org/10.1021/nl801316d
    23 https://doi.org/10.1039/b512799h
    24 https://doi.org/10.1103/physrevb.54.17954
    25 https://doi.org/10.1103/physrevlett.100.206803
    26 https://doi.org/10.1103/physrevlett.96.176101
    27 https://doi.org/10.1103/physrevlett.97.216803
    28 https://doi.org/10.1103/physrevlett.98.206805
    29 https://doi.org/10.1109/ted.2007.891872
    30 https://doi.org/10.1126/science.1102896
    31 https://doi.org/10.1126/science.1150878
    32 https://doi.org/10.1139/v69-526
    33 schema:datePublished 2009-04-16
    34 schema:datePublishedReg 2009-04-16
    35 schema:description Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N8ccc72ae57a140e2a89cb162664681bd
    40 Ndfaafd58bb9643f3b010da84e07e1f2a
    41 sg:journal.1018957
    42 schema:name Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
    43 schema:pagination 872
    44 schema:productId N0c1621fbd62e4c11862492231053b332
    45 N12c26e794c4f405ba609844f15a9c2be
    46 N42cecb82ff5043128b34592fe7235d69
    47 Nd12c4fcd02e54d95a49fe0a4d06d7edf
    48 Nfb42f48da5094f95bc01273d3a918e2b
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318923
    50 https://doi.org/10.1038/nature07872
    51 schema:sdDatePublished 2019-04-11T09:12
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N07ee3167cbf841fba7f94d16191ecdb2
    54 schema:url https://www.nature.com/articles/nature07872
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N07ee3167cbf841fba7f94d16191ecdb2 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N0c1621fbd62e4c11862492231053b332 schema:name pubmed_id
    61 schema:value 19370030
    62 rdf:type schema:PropertyValue
    63 N12c26e794c4f405ba609844f15a9c2be schema:name doi
    64 schema:value 10.1038/nature07872
    65 rdf:type schema:PropertyValue
    66 N14a5097656f24373aecf11a2b265e528 schema:name Department of Chemistry,
    67 rdf:type schema:Organization
    68 N42cecb82ff5043128b34592fe7235d69 schema:name dimensions_id
    69 schema:value pub.1033318923
    70 rdf:type schema:PropertyValue
    71 N67c54acdd35045dc976bd9bd04cf818b schema:name Department of Chemistry,
    72 rdf:type schema:Organization
    73 N7bc81d028f3646c5a7e93b3fb6663f05 schema:name Department of Chemistry,
    74 rdf:type schema:Organization
    75 N813382173fb34106a93f2ac6c8e473ac rdf:first sg:person.01030756160.04
    76 rdf:rest Nce817839bd734ca692865878345fee4f
    77 N8bcf8de936504273bacd90b7b2a6f987 rdf:first sg:person.0646414360.09
    78 rdf:rest Na076af00592d444da9f54ee2f81793b6
    79 N8ccc72ae57a140e2a89cb162664681bd schema:volumeNumber 458
    80 rdf:type schema:PublicationVolume
    81 Na076af00592d444da9f54ee2f81793b6 rdf:first sg:person.01303536270.85
    82 rdf:rest Na9445f24679e4df588a89d483d1e6624
    83 Na3c0b8bdcbb34bf4a9c9c1b0361044af rdf:first sg:person.0600301160.12
    84 rdf:rest N8bcf8de936504273bacd90b7b2a6f987
    85 Na49ef1f48ab942d199d379da0daf53e1 rdf:first sg:person.01154712521.14
    86 rdf:rest Na3c0b8bdcbb34bf4a9c9c1b0361044af
    87 Na5e0033617d041e5bd54af6b2ef4a840 schema:name Department of Chemistry,
    88 rdf:type schema:Organization
    89 Na9445f24679e4df588a89d483d1e6624 rdf:first sg:person.0632671550.46
    90 rdf:rest N813382173fb34106a93f2ac6c8e473ac
    91 Nce817839bd734ca692865878345fee4f rdf:first sg:person.01275626274.52
    92 rdf:rest rdf:nil
    93 Nd12c4fcd02e54d95a49fe0a4d06d7edf schema:name readcube_id
    94 schema:value 9eb9d26aba083568338bf3bd5dd64af1881932c30277ef400f35cdddbaad74ca
    95 rdf:type schema:PropertyValue
    96 Nde366df5cc2046c895618451c0e3d59d schema:name Department of Chemistry,
    97 rdf:type schema:Organization
    98 Ndebed990d4444c21b6446c72b4293d1b schema:name Department of Chemistry,
    99 rdf:type schema:Organization
    100 Ndfaafd58bb9643f3b010da84e07e1f2a schema:issueNumber 7240
    101 rdf:type schema:PublicationIssue
    102 Nfb42f48da5094f95bc01273d3a918e2b schema:name nlm_unique_id
    103 schema:value 0410462
    104 rdf:type schema:PropertyValue
    105 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Technology
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Nanotechnology
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1018957 schema:issn 0090-0028
    112 1476-4687
    113 schema:name Nature
    114 rdf:type schema:Periodical
    115 sg:person.01030756160.04 schema:affiliation N7bc81d028f3646c5a7e93b3fb6663f05
    116 schema:familyName Price
    117 schema:givenName B. Katherine
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030756160.04
    119 rdf:type schema:Person
    120 sg:person.01154712521.14 schema:affiliation Na5e0033617d041e5bd54af6b2ef4a840
    121 schema:familyName Kosynkin
    122 schema:givenName Dmitry V.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154712521.14
    124 rdf:type schema:Person
    125 sg:person.01275626274.52 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
    126 schema:familyName Tour
    127 schema:givenName James M.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275626274.52
    129 rdf:type schema:Person
    130 sg:person.01303536270.85 schema:affiliation N67c54acdd35045dc976bd9bd04cf818b
    131 schema:familyName Lomeda
    132 schema:givenName Jay R.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303536270.85
    134 rdf:type schema:Person
    135 sg:person.0600301160.12 schema:affiliation Nde366df5cc2046c895618451c0e3d59d
    136 schema:familyName Higginbotham
    137 schema:givenName Amanda L.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600301160.12
    139 rdf:type schema:Person
    140 sg:person.0632671550.46 schema:affiliation Ndebed990d4444c21b6446c72b4293d1b
    141 schema:familyName Dimiev
    142 schema:givenName Ayrat
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632671550.46
    144 rdf:type schema:Person
    145 sg:person.0646414360.09 schema:affiliation N14a5097656f24373aecf11a2b265e528
    146 schema:familyName Sinitskii
    147 schema:givenName Alexander
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646414360.09
    149 rdf:type schema:Person
    150 sg:pub.10.1038/441818a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040103352
    151 https://doi.org/10.1038/441818a
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    154 https://doi.org/10.1038/nature04233
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    157 https://doi.org/10.1038/nature04235
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
    160 https://doi.org/10.1038/nature05180
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    163 https://doi.org/10.1038/nmat1849
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    166 https://doi.org/10.1038/nnano.2007.451
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2008.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    169 https://doi.org/10.1038/nnano.2008.83
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.carbon.2007.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174267
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.jpcs.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036155590
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0921-4526(02)00999-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045746402
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ja00394a037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055728956
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/ja710234t schema:sameAs https://app.dimensions.ai/details/publication/pub.1019245124
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/jp060936f schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316831
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/jp9731821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578535
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/la026525h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021314538
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/nl062132h schema:sameAs https://app.dimensions.ai/details/publication/pub.1022488808
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1021/nl801316d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036027733
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1039/b512799h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221609
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/physrevlett.96.176101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832210
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/ted.2007.891872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061592414
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1139/v69-526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031508018
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
    216 schema:name Department of Chemistry,
    217 Department of Mechanical Engineering and Materials Science,
    218 Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...