Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04-16

AUTHORS

Dmitry V. Kosynkin, Amanda L. Higginbotham, Alexander Sinitskii, Jay R. Lomeda, Ayrat Dimiev, B. Katherine Price, James M. Tour

ABSTRACT

Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required. More... »

PAGES

872

Journal

TITLE

Nature

ISSUE

7240

VOLUME

458

Author Affiliations

Related Patents

  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Graphene Structure And Method Of Manufacturing The Graphene Structure, And Graphene Device And Method Of Manufacturing The Graphene Device
  • Solvent-Based Methods For Production Of Graphene Nanoribbons
  • Purification Process For Graphene Nanoribbons
  • Method For Preparing Graphene Ribbons
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Graphene Resonant Tunneling Transistor
  • Production Of Graphene Nanoplatelets By Oxidative Anhydrous Acidic Media
  • Production Of Graphene From Metal Alkoxide
  • Capacitor With Parallel Nanotubes
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Degradation Of Nanomaterials
  • Sheath-Core Fibers For Superelastic Electronics, Sensors, And Muscles
  • Solvent-Based Methods For Production Of Graphene Nanoribbons
  • Laser-Induced Graphene Scrolls (Ligs) Materials
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Sub-10 Nm Graphene Nanoribbon Lattices
  • Oxidized Graphene Nano-Ribbon/Polymer Composite Film And Preparation Method Therefor
  • Method Of Manufacturing A Monolayer Graphene Photodetector And Monolayer Graphene Photodetector
  • Synthesis And Applications Of Graphene Based Nanomaterials
  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Graphene Structure And Method Of Manufacturing The Graphene Structure, And Graphene Device And Method Of Manufacturing The Graphene Device
  • Organic Material-Based Graphitic Material
  • Sorting Two-Dimensional Nanomaterials By Thickness
  • Purification Process For Graphene Nanoribbons
  • Method For Preparing Graphene Ribbons
  • Electrochemical Process For Synthesis Of Graphene
  • Graphene Nanoribbons Prepared From Carbon Nanotubes Via Alkali Metal Exposure
  • Graphene Nanoribbon Precursors And Monomers Suitable For Preparation Thereof
  • Electrochemical Process For Synthesis Of Graphene
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature07872

    DOI

    http://dx.doi.org/10.1038/nature07872

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033318923

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19370030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosynkin", 
            "givenName": "Dmitry V.", 
            "id": "sg:person.01154712521.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154712521.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Higginbotham", 
            "givenName": "Amanda L.", 
            "id": "sg:person.0600301160.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600301160.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sinitskii", 
            "givenName": "Alexander", 
            "id": "sg:person.0646414360.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646414360.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lomeda", 
            "givenName": "Jay R.", 
            "id": "sg:person.01303536270.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303536270.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dimiev", 
            "givenName": "Ayrat", 
            "id": "sg:person.0632671550.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632671550.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Chemistry,"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Price", 
            "givenName": "B. Katherine", 
            "id": "sg:person.01030756160.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030756160.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rice University", 
              "id": "https://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Department of Chemistry,", 
                "Department of Mechanical Engineering and Materials Science,", 
                "Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tour", 
            "givenName": "James M.", 
            "id": "sg:person.01275626274.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275626274.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006934660", 
              "https://doi.org/10.1038/nature05180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2007.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007174267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.206805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008582960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b512799h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016221609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1150878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017724475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja710234t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019245124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja710234t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019245124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021016859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la026525h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021314538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la026525h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021314538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062132h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022488808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062132h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022488808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027154969", 
              "https://doi.org/10.1038/nnano.2008.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp9731821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028578535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/v69-526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031508018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp060936f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033316831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp060936f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033316831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801316d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036027733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpcs.2006.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036155590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/441818a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040103352", 
              "https://doi.org/10.1038/441818a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.206803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040170470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4526(02)00999-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045746402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00394a037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055728956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060832210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060832210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ted.2007.891872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061592414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04-16", 
        "datePublishedReg": "2009-04-16", 
        "description": "Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature07872", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7240", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "458"
          }
        ], 
        "name": "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", 
        "pagination": "872", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9eb9d26aba083568338bf3bd5dd64af1881932c30277ef400f35cdddbaad74ca"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19370030"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature07872"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033318923"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature07872", 
          "https://app.dimensions.ai/details/publication/pub.1033318923"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47985_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature07872"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07872'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07872'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      57 URIs      20 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature07872 schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author N9ffcc838bb20453199443a1ae1f15ec7
    4 schema:citation sg:pub.10.1038/441818a
    5 sg:pub.10.1038/nature04233
    6 sg:pub.10.1038/nature04235
    7 sg:pub.10.1038/nature05180
    8 sg:pub.10.1038/nmat1849
    9 sg:pub.10.1038/nnano.2007.451
    10 sg:pub.10.1038/nnano.2008.83
    11 https://doi.org/10.1016/j.carbon.2007.02.034
    12 https://doi.org/10.1016/j.jpcs.2006.05.010
    13 https://doi.org/10.1016/j.physe.2007.06.020
    14 https://doi.org/10.1016/s0921-4526(02)00999-7
    15 https://doi.org/10.1021/ja00394a037
    16 https://doi.org/10.1021/ja01539a017
    17 https://doi.org/10.1021/ja710234t
    18 https://doi.org/10.1021/jp060936f
    19 https://doi.org/10.1021/jp9731821
    20 https://doi.org/10.1021/la026525h
    21 https://doi.org/10.1021/nl062132h
    22 https://doi.org/10.1021/nl801316d
    23 https://doi.org/10.1039/b512799h
    24 https://doi.org/10.1103/physrevb.54.17954
    25 https://doi.org/10.1103/physrevlett.100.206803
    26 https://doi.org/10.1103/physrevlett.96.176101
    27 https://doi.org/10.1103/physrevlett.97.216803
    28 https://doi.org/10.1103/physrevlett.98.206805
    29 https://doi.org/10.1109/ted.2007.891872
    30 https://doi.org/10.1126/science.1102896
    31 https://doi.org/10.1126/science.1150878
    32 https://doi.org/10.1139/v69-526
    33 schema:datePublished 2009-04-16
    34 schema:datePublishedReg 2009-04-16
    35 schema:description Graphene, or single-layered graphite, with its high crystallinity and interesting semimetal electronic properties, has emerged as an exciting two-dimensional material showing great promise for the fabrication of nanoscale devices. Thin, elongated strips of graphene that possess straight edges, termed graphene ribbons, gradually transform from semiconductors to semimetals as their width increases, and represent a particularly versatile variety of graphene. Several lithographic, chemical and synthetic procedures are known to produce microscopic samples of graphene nanoribbons, and one chemical vapour deposition process has successfully produced macroscopic quantities of nanoribbons at 950 degrees C. Here we describe a simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls. Although oxidative shortening of MWCNTs has previously been achieved, lengthwise cutting is hitherto unreported. Ribbon structures with high water solubility are obtained. Subsequent chemical reduction of the nanoribbons from MWCNTs results in restoration of electrical conductivity. These early results affording nanoribbons could eventually lead to applications in fields of electronics and composite materials where bulk quantities of nanoribbons are required.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N47f529ee7d2d4c0ea5acc436950251b8
    40 Nfe0aeb4e18844370b512535f916369bc
    41 sg:journal.1018957
    42 schema:name Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
    43 schema:pagination 872
    44 schema:productId N0a316c69563e4657b31c7bde290ed4ed
    45 N0e52fddfed534641a8fffef4694ecde4
    46 N835e43e6f4024c3da56140f570ee0130
    47 Nc6185447e4504d0597b92c30bde258b1
    48 Ne2269b7723104f4181c98c0dc1eb08b8
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318923
    50 https://doi.org/10.1038/nature07872
    51 schema:sdDatePublished 2019-04-11T09:12
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N4d92dd0d463044cc9a22519acdea4767
    54 schema:url https://www.nature.com/articles/nature07872
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N099aa5647f03418ea1013b38bc0b8423 rdf:first sg:person.01303536270.85
    59 rdf:rest Nb9e08c20d9c0499fbdd4237683f681d8
    60 N0a316c69563e4657b31c7bde290ed4ed schema:name pubmed_id
    61 schema:value 19370030
    62 rdf:type schema:PropertyValue
    63 N0e52fddfed534641a8fffef4694ecde4 schema:name nlm_unique_id
    64 schema:value 0410462
    65 rdf:type schema:PropertyValue
    66 N32488b39ad8a4e939b91bfa7ac01e74a schema:name Department of Chemistry,
    67 rdf:type schema:Organization
    68 N36e3c38c5bd049239467c3718bae69a6 rdf:first sg:person.0600301160.12
    69 rdf:rest N3e5a5e6ac4a747388cb77d8ee6e2a1e9
    70 N3e5a5e6ac4a747388cb77d8ee6e2a1e9 rdf:first sg:person.0646414360.09
    71 rdf:rest N099aa5647f03418ea1013b38bc0b8423
    72 N47f529ee7d2d4c0ea5acc436950251b8 schema:issueNumber 7240
    73 rdf:type schema:PublicationIssue
    74 N4d92dd0d463044cc9a22519acdea4767 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N5503061264f1464bbd2db402aa88592e rdf:first sg:person.01275626274.52
    77 rdf:rest rdf:nil
    78 N687c85a774e84ea5910be1be59ee4878 schema:name Department of Chemistry,
    79 rdf:type schema:Organization
    80 N7aa324e9fdbd4918b1ad52004cb97a26 rdf:first sg:person.01030756160.04
    81 rdf:rest N5503061264f1464bbd2db402aa88592e
    82 N835e43e6f4024c3da56140f570ee0130 schema:name readcube_id
    83 schema:value 9eb9d26aba083568338bf3bd5dd64af1881932c30277ef400f35cdddbaad74ca
    84 rdf:type schema:PropertyValue
    85 N87a32d20940741d3a4d2c04937270aa4 schema:name Department of Chemistry,
    86 rdf:type schema:Organization
    87 N9ffcc838bb20453199443a1ae1f15ec7 rdf:first sg:person.01154712521.14
    88 rdf:rest N36e3c38c5bd049239467c3718bae69a6
    89 Nb9e08c20d9c0499fbdd4237683f681d8 rdf:first sg:person.0632671550.46
    90 rdf:rest N7aa324e9fdbd4918b1ad52004cb97a26
    91 Nba691a3e57c540ee94aeca81bb087ad7 schema:name Department of Chemistry,
    92 rdf:type schema:Organization
    93 Nc6185447e4504d0597b92c30bde258b1 schema:name doi
    94 schema:value 10.1038/nature07872
    95 rdf:type schema:PropertyValue
    96 Nce03f6ae9d0340448283dff9eb81b0fa schema:name Department of Chemistry,
    97 rdf:type schema:Organization
    98 Nd670a44cb6074e69a832cee40a2ed6ae schema:name Department of Chemistry,
    99 rdf:type schema:Organization
    100 Ne2269b7723104f4181c98c0dc1eb08b8 schema:name dimensions_id
    101 schema:value pub.1033318923
    102 rdf:type schema:PropertyValue
    103 Nfe0aeb4e18844370b512535f916369bc schema:volumeNumber 458
    104 rdf:type schema:PublicationVolume
    105 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Technology
    107 rdf:type schema:DefinedTerm
    108 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Nanotechnology
    110 rdf:type schema:DefinedTerm
    111 sg:journal.1018957 schema:issn 0090-0028
    112 1476-4687
    113 schema:name Nature
    114 rdf:type schema:Periodical
    115 sg:person.01030756160.04 schema:affiliation Nd670a44cb6074e69a832cee40a2ed6ae
    116 schema:familyName Price
    117 schema:givenName B. Katherine
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030756160.04
    119 rdf:type schema:Person
    120 sg:person.01154712521.14 schema:affiliation N87a32d20940741d3a4d2c04937270aa4
    121 schema:familyName Kosynkin
    122 schema:givenName Dmitry V.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154712521.14
    124 rdf:type schema:Person
    125 sg:person.01275626274.52 schema:affiliation https://www.grid.ac/institutes/grid.21940.3e
    126 schema:familyName Tour
    127 schema:givenName James M.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275626274.52
    129 rdf:type schema:Person
    130 sg:person.01303536270.85 schema:affiliation N32488b39ad8a4e939b91bfa7ac01e74a
    131 schema:familyName Lomeda
    132 schema:givenName Jay R.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303536270.85
    134 rdf:type schema:Person
    135 sg:person.0600301160.12 schema:affiliation Nce03f6ae9d0340448283dff9eb81b0fa
    136 schema:familyName Higginbotham
    137 schema:givenName Amanda L.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600301160.12
    139 rdf:type schema:Person
    140 sg:person.0632671550.46 schema:affiliation N687c85a774e84ea5910be1be59ee4878
    141 schema:familyName Dimiev
    142 schema:givenName Ayrat
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632671550.46
    144 rdf:type schema:Person
    145 sg:person.0646414360.09 schema:affiliation Nba691a3e57c540ee94aeca81bb087ad7
    146 schema:familyName Sinitskii
    147 schema:givenName Alexander
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646414360.09
    149 rdf:type schema:Person
    150 sg:pub.10.1038/441818a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040103352
    151 https://doi.org/10.1038/441818a
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    154 https://doi.org/10.1038/nature04233
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    157 https://doi.org/10.1038/nature04235
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
    160 https://doi.org/10.1038/nature05180
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    163 https://doi.org/10.1038/nmat1849
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    166 https://doi.org/10.1038/nnano.2007.451
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2008.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    169 https://doi.org/10.1038/nnano.2008.83
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.carbon.2007.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174267
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.jpcs.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036155590
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0921-4526(02)00999-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045746402
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ja00394a037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055728956
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/ja710234t schema:sameAs https://app.dimensions.ai/details/publication/pub.1019245124
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1021/jp060936f schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316831
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1021/jp9731821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028578535
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1021/la026525h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021314538
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1021/nl062132h schema:sameAs https://app.dimensions.ai/details/publication/pub.1022488808
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1021/nl801316d schema:sameAs https://app.dimensions.ai/details/publication/pub.1036027733
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1039/b512799h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016221609
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/physrevlett.96.176101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832210
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/ted.2007.891872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061592414
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1139/v69-526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031508018
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.21940.3e schema:alternateName Rice University
    216 schema:name Department of Chemistry,
    217 Department of Mechanical Engineering and Materials Science,
    218 Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...