Virus-free induction of pluripotency and subsequent excision of reprogramming factors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04

AUTHORS

Keisuke Kaji, Katherine Norrby, Agnieszka Paca, Maria Mileikovsky, Paria Mohseni, Knut Woltjen

ABSTRACT

Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia. Two transient transfection-reprogramming methods have been published to address this issue. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models. More... »

PAGES

771

Journal

TITLE

Nature

ISSUE

7239

VOLUME

458

Related Patents

  • Induced Pluripotent Stem Cells
  • Induced Pluripotent Stem Cells Produced With Oct3/4, Klf4 And Sox2
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Kit For Making Induced Pluripotent Stem Cells Using Modified Rnas
  • Induced Pluripotent Stem Cells With Synthetic Modified Rnas
  • Engineered Nucleic Acids Encoding A Modified Erythropoietin And Their Expression
  • Methods And Systems For Converting Precursor Cells Into Gastric Tissues Through Directed Differentiation
  • Reprogramming Cells
  • Reprogramming Cells
  • Cardiomyocytes From Induced Pluripotent Stem Cells From Patients And Methods Of Use Thereof
  • Enriched Population Of Human Pluripotent Cells With Oct-4 And Sox2 Integrated Into Their Genome
  • Compositions And Methods For Treatment Of Skin Disorders
  • Protein-Induced Pluripotent Cell Technology And Uses Thereof
  • Methods And Systems For Converting Precursor Cells Into Intestinal Tissues Through Directed Differentiation
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Modified Polynucleotides For Treating Galactosylceramidase Protein Deficiency
  • Modified Polynucleotides Encoding Granulysin
  • Use Of Markers Of Undifferentiated Pluripotent Stem Cells
  • Compositions, Kits, And Methods For Making Induced Pluripotent Stem Cells Using Synthetic Modified Rnas
  • Induced Pluripotent Stem Cells
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Modified Polynucleotides Encoding Cited4
  • Chemical Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides For The Production Of Nuclear Proteins
  • Modified Polynucleotides Encoding Septin-4
  • Kits Comprising Linear Dnas For Sustained Polypeptide Expression Using Synthetic, Modified Rnas
  • Vectors For Generating Pluripotent Stem Cells And Methods Of Producing Pluripotent Stem Cells Using The Same
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides For Treating Protein Deficiency
  • Somatic Cell Reprogramming By Retroviral Vectors Encoding Oct3/4. Klf4, C-Myc And Sox2
  • Generation And Maintenance Of Stem Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides Encoding Apoptosis Inducing Factor 1
  • Induction Of Pluripotent Cells
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Cell Compositions Derived From Dedifferentiated Reprogrammed Cells
  • Methods And Platforms For Drug Discovery Using Induced Pluripotent Stem Cells
  • Modified Polynucleotides For The Production Of Proteins Associated With Human Disease
  • Methods For The Production Of Ips Cells Using Epstein-Barr (Ebv)-Based Reprogramming Vectors
  • Reprogramming Of Cells To A New Fate
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides Encoding Copper Metabolism (Murr1) Domain Containing 1
  • In Vitro Differentiation Of Pluripotent Stem Cells To Pancreatic Endoderm Cells (Pec) And Endocrine Cells
  • Human Blood-Brain Endothelial Cells Derived From Pluripotent Stem Cells And Blood-Brain Barrier Model Thereof
  • Induced Pluripotent Stem Cells Produced Using Reprogramming Factors And A Rho Kinase Inhibitor Or A Histone Deacetylase Inhibitor
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Formulation And Delivery Of Plga Microspheres
  • Compositions And Methods Of Altering Cholesterol Levels
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides Encoding Basic Helix-Loop-Helix Family Member E41
  • Modified Polynucleotides For The Production Of Proteins
  • Chemical Approaches For Generation Of Induced Pluripotent Stem Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Microcarriers For Stem Cell Culture
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Oncology-Related Proteins And Peptides
  • Induced Pluripotent Stem Cells And Methods Of Use
  • Myc Variants Improve Induced Pluripotent Stem Cell Generation Efficiency
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of G-Csf
  • In Vitro Model Of Spinal Muscular Atrophy
  • Providing Ipscs To A Customer
  • Methods For The Production Of Ips Cells Using Non-Viral Approach
  • Reprogramming Immortalized B-Cells To Induced Pluripotent Stem Cells
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Terminally Modified Rna
  • Generation Of Mouse Induced Pluripotent Stem Cells Bytransient Expression Of A Single Non- Viral Polycistronic Vector
  • Nuclear Reprogramming Factor
  • A Method For Producing Test Systems From Donors Suffering From Adverse Effects Of Medicaments And/Or Medical Treatments, And Uses Of Said Systems
  • Methods, Systems And Compositions Relating To Cell Conversion Via Protein-Induced In-Vivo Cell Reprogramming
  • Modified Polynucleotides For The Production Of Cosmetic Proteins And Peptides
  • Vector Material For Creating Pluripotent Stem Cells, And Pluripotent Stem Cell Creation Method Using Said Vector Material
  • In Vivo Production Of Proteins
  • Modified Polynucleotides Encoding Siah E3 Ubiquitin Protein Ligase 1
  • Modified Polynucleotides Encoding Hepatitis A Virus Cellular Receptor 2
  • Reprogramming Cells
  • Dlin-Kc2-Dma Lipid Nanoparticle Delivery Of Modified Polynucleotides
  • Methods For The Production Of Ips Cells
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Generation Of Mouse Induced Pluripotent Stem Cells Bytransient Expression Of A Single Non- Viral Polycistronic Vector
  • Oct3/4, Klf4, C-Myc And Sox2 Produce Induced Pluripotent Stem Cells
  • Modified Polynucleotides For The Production Of Proteins
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Cell Compositions Derived From Dedifferentiated Reprogrammed Cells
  • Cell Compositions Derived From Dedifferentiated Reprogrammed Cells
  • Method For Producing A Protein Of Interest In A Primate
  • Vector Material For Creating Pluripotent Stem Cells, And Pluripotent Stem Cell Creation Method Using Said Vector Material
  • Reprogrammation Of Eukaryotic Cells With Engineered Microvesicles
  • Induced Pluripotent Stem Cell Produced By Transfecting A Human Neural Stem Cell With An Episomal Vector Encoding The Oct4 And Nanog Proteins
  • Modified Polynucleotides Encoding Aquaporin-5
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Human Pluripotent Stem Cells Induced From Undifferentiated Stem Cells Derived From A Human Postnatal Tissue
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Oncolytic Hsv Vector
  • Split Dose Administration
  • Modified Polynucleotides Encoding Aryl Hydrocarbon Receptor Nuclear Translocator
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Reprogramming Of Cells To A New Fate
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Formulation And Delivery Of Plga Microspheres
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature07864

    DOI

    http://dx.doi.org/10.1038/nature07864

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002136274

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19252477


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellular Reprogramming", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibroblasts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transfection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transgenes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "MRC Centre for Regenerative Medicine", 
              "id": "https://www.grid.ac/institutes/grid.483689.8", 
              "name": [
                "MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaji", 
            "givenName": "Keisuke", 
            "id": "sg:person.01350502174.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350502174.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Centre for Regenerative Medicine", 
              "id": "https://www.grid.ac/institutes/grid.483689.8", 
              "name": [
                "MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Norrby", 
            "givenName": "Katherine", 
            "id": "sg:person.0625076074.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625076074.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MRC Centre for Regenerative Medicine", 
              "id": "https://www.grid.ac/institutes/grid.483689.8", 
              "name": [
                "MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paca", 
            "givenName": "Agnieszka", 
            "id": "sg:person.01044265643.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044265643.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lunenfeld-Tanenbaum Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.250674.2", 
              "name": [
                "Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mileikovsky", 
            "givenName": "Maria", 
            "id": "sg:person.0661735626.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661735626.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Toronto", 
              "id": "https://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada", 
                "Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohseni", 
            "givenName": "Paria", 
            "id": "sg:person.01007437674.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007437674.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lunenfeld-Tanenbaum Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.250674.2", 
              "name": [
                "Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woltjen", 
            "givenName": "Knut", 
            "id": "sg:person.01123666274.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123666274.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002347899", 
              "https://doi.org/10.1038/nature05934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0801017105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006009044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009099013", 
              "https://doi.org/10.1038/ncb1372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009099013", 
              "https://doi.org/10.1038/ncb1372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.02880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010917091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011057005", 
              "https://doi.org/10.1038/nbt780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt780", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011057005", 
              "https://doi.org/10.1038/nbt780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011992920", 
              "https://doi.org/10.1038/nature06534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012875023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014573758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/stemcells.2006-0813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019108901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019109862", 
              "https://doi.org/10.1038/nature05944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019816783", 
              "https://doi.org/10.1038/nature07863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020501792", 
              "https://doi.org/10.1038/nature06403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020853821", 
              "https://doi.org/10.1038/sj.onc.1208307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1208307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020853821", 
              "https://doi.org/10.1038/sj.onc.1208307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(91)90434-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021517814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(91)90434-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021517814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1162494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021871278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0811426106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024424498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025092428", 
              "https://doi.org/10.1038/ncb1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025092428", 
              "https://doi.org/10.1038/ncb1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029649252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037743725", 
              "https://doi.org/10.1038/nature07056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039129492", 
              "https://doi.org/10.1038/nbt957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039129492", 
              "https://doi.org/10.1038/nbt957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039129492", 
              "https://doi.org/10.1038/nbt957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1154884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041856503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2005.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046693583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2005.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046693583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ppo.0b013e31803c7245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048651655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/ppo.0b013e31803c7245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048651655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/stemcells.2008-1075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049957596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1164270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062458687"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-04", 
        "datePublishedReg": "2009-04-01", 
        "description": "Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia. Two transient transfection-reprogramming methods have been published to address this issue. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature07864", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2758863", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7239", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "458"
          }
        ], 
        "name": "Virus-free induction of pluripotency and subsequent excision of reprogramming factors", 
        "pagination": "771", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0a2c88cf718ee42fb82f1331f6e59a8c715c67096de72db63dc5dcb6420c4829"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19252477"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature07864"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002136274"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature07864", 
          "https://app.dimensions.ai/details/publication/pub.1002136274"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature07864"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07864'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07864'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07864'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07864'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      70 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature07864 schema:about N04aeda58d5b34efaab771e5143247ee1
    2 N0add8230b0f54c91bf7694781d873f71
    3 N12f30a814b9449bb8c356b9f56568047
    4 N1c36f24c6441477bbbfb17d81d5a59b0
    5 N23107ef2be044e328738f619476e3e50
    6 N3042e51114e24655b5c5fabb0143961f
    7 N54d42a87f57c43b6adf46ab0a77f46de
    8 N9498d9afafad47158cad8afbecea600c
    9 Nb3830a3579a643b1ad75a8b29cc4bf6c
    10 Nb9bdd5b3b1dd4ec4a99e7ed60478be21
    11 Nefe868f5798845068c3bd2a8b169f532
    12 Nf1a8e71da257418da24623316230c665
    13 Nf4c1ec0fa03e4646b422cb93a9082100
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author Nb37bcde203344386beb93ce734a80e49
    17 schema:citation sg:pub.10.1038/nature05934
    18 sg:pub.10.1038/nature05944
    19 sg:pub.10.1038/nature06403
    20 sg:pub.10.1038/nature06534
    21 sg:pub.10.1038/nature07056
    22 sg:pub.10.1038/nature07863
    23 sg:pub.10.1038/nbt1374
    24 sg:pub.10.1038/nbt780
    25 sg:pub.10.1038/nbt957
    26 sg:pub.10.1038/ncb1110
    27 sg:pub.10.1038/ncb1372
    28 sg:pub.10.1038/sj.onc.1208307
    29 https://doi.org/10.1016/0378-1119(91)90434-d
    30 https://doi.org/10.1016/j.cell.2005.02.018
    31 https://doi.org/10.1016/j.cell.2006.07.024
    32 https://doi.org/10.1016/j.cell.2007.11.019
    33 https://doi.org/10.1016/j.stem.2007.05.014
    34 https://doi.org/10.1016/j.stem.2007.12.001
    35 https://doi.org/10.1073/pnas.0801017105
    36 https://doi.org/10.1073/pnas.0811426106
    37 https://doi.org/10.1097/ppo.0b013e31803c7245
    38 https://doi.org/10.1126/science.1151526
    39 https://doi.org/10.1126/science.1154884
    40 https://doi.org/10.1126/science.1162494
    41 https://doi.org/10.1126/science.1164270
    42 https://doi.org/10.1242/dev.02880
    43 https://doi.org/10.1634/stemcells.2006-0813
    44 https://doi.org/10.1634/stemcells.2008-1075
    45 schema:datePublished 2009-04
    46 schema:datePublishedReg 2009-04-01
    47 schema:description Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any one of which could cause unpredictable genetic dysfunction. Whereas c-Myc is dispensable for reprogramming, complete elimination of the other exogenous factors is also desired because ectopic expression of either Oct4 (also known as Pou5f1) or Klf4 can induce dysplasia. Two transient transfection-reprogramming methods have been published to address this issue. However, the efficiency of both approaches is extremely low, and neither has been applied successfully to human cells so far. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc, Klf4, Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimaeric mice. When the single-vector reprogramming system was combined with a piggyBac transposon, we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N1b2bd8e986be4e828545cde82710861b
    52 N83400b4cb5e54f2ca49bed767daa7378
    53 sg:journal.1018957
    54 schema:name Virus-free induction of pluripotency and subsequent excision of reprogramming factors
    55 schema:pagination 771
    56 schema:productId N414ce476975441dcbdf3bb35c5942c33
    57 N9b47af3d0b7b46978f35a6936a5a3fbe
    58 Nc192311fc6a749328b520344e183131c
    59 Ncdcc1243c8fd472daf516cdbe9976f40
    60 Nf428de7e59284c6c971c67361a2bfdbf
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002136274
    62 https://doi.org/10.1038/nature07864
    63 schema:sdDatePublished 2019-04-10T16:28
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N0b32e0985a49434381f9c7c3ae25c81d
    66 schema:url https://www.nature.com/articles/nature07864
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N04aeda58d5b34efaab771e5143247ee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Genetic Vectors
    72 rdf:type schema:DefinedTerm
    73 N0add8230b0f54c91bf7694781d873f71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Cell Line
    75 rdf:type schema:DefinedTerm
    76 N0b32e0985a49434381f9c7c3ae25c81d schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N0c839042de894c24abfbcec900a6a0b4 rdf:first sg:person.0661735626.03
    79 rdf:rest N3e082e2f46f24c26aa3cb0d87275c85d
    80 N12f30a814b9449bb8c356b9f56568047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Fibroblasts
    82 rdf:type schema:DefinedTerm
    83 N1b2bd8e986be4e828545cde82710861b schema:issueNumber 7239
    84 rdf:type schema:PublicationIssue
    85 N1c36f24c6441477bbbfb17d81d5a59b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Pluripotent Stem Cells
    87 rdf:type schema:DefinedTerm
    88 N23107ef2be044e328738f619476e3e50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Animals
    90 rdf:type schema:DefinedTerm
    91 N3042e51114e24655b5c5fabb0143961f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Cellular Reprogramming
    93 rdf:type schema:DefinedTerm
    94 N3e082e2f46f24c26aa3cb0d87275c85d rdf:first sg:person.01007437674.97
    95 rdf:rest Nce8dfdaf98b548499a3d6b4e1a0bf6de
    96 N414ce476975441dcbdf3bb35c5942c33 schema:name readcube_id
    97 schema:value 0a2c88cf718ee42fb82f1331f6e59a8c715c67096de72db63dc5dcb6420c4829
    98 rdf:type schema:PropertyValue
    99 N54d42a87f57c43b6adf46ab0a77f46de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Transgenes
    101 rdf:type schema:DefinedTerm
    102 N7bfb34bea17145a8b6975ae782f1850a rdf:first sg:person.01044265643.15
    103 rdf:rest N0c839042de894c24abfbcec900a6a0b4
    104 N83400b4cb5e54f2ca49bed767daa7378 schema:volumeNumber 458
    105 rdf:type schema:PublicationVolume
    106 N9498d9afafad47158cad8afbecea600c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Cells, Cultured
    108 rdf:type schema:DefinedTerm
    109 N9b47af3d0b7b46978f35a6936a5a3fbe schema:name nlm_unique_id
    110 schema:value 0410462
    111 rdf:type schema:PropertyValue
    112 Nb37bcde203344386beb93ce734a80e49 rdf:first sg:person.01350502174.86
    113 rdf:rest Nc6e316a5bd8f4634bc29eadf2e995b0d
    114 Nb3830a3579a643b1ad75a8b29cc4bf6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Humans
    116 rdf:type schema:DefinedTerm
    117 Nb9bdd5b3b1dd4ec4a99e7ed60478be21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Gene Expression Profiling
    119 rdf:type schema:DefinedTerm
    120 Nc192311fc6a749328b520344e183131c schema:name doi
    121 schema:value 10.1038/nature07864
    122 rdf:type schema:PropertyValue
    123 Nc6e316a5bd8f4634bc29eadf2e995b0d rdf:first sg:person.0625076074.92
    124 rdf:rest N7bfb34bea17145a8b6975ae782f1850a
    125 Ncdcc1243c8fd472daf516cdbe9976f40 schema:name pubmed_id
    126 schema:value 19252477
    127 rdf:type schema:PropertyValue
    128 Nce8dfdaf98b548499a3d6b4e1a0bf6de rdf:first sg:person.01123666274.06
    129 rdf:rest rdf:nil
    130 Nefe868f5798845068c3bd2a8b169f532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Biomarkers
    132 rdf:type schema:DefinedTerm
    133 Nf1a8e71da257418da24623316230c665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Mice
    135 rdf:type schema:DefinedTerm
    136 Nf428de7e59284c6c971c67361a2bfdbf schema:name dimensions_id
    137 schema:value pub.1002136274
    138 rdf:type schema:PropertyValue
    139 Nf4c1ec0fa03e4646b422cb93a9082100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Transfection
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biological Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Genetics
    147 rdf:type schema:DefinedTerm
    148 sg:grant.2758863 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07864
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1018957 schema:issn 0090-0028
    151 1476-4687
    152 schema:name Nature
    153 rdf:type schema:Periodical
    154 sg:person.01007437674.97 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
    155 schema:familyName Mohseni
    156 schema:givenName Paria
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007437674.97
    158 rdf:type schema:Person
    159 sg:person.01044265643.15 schema:affiliation https://www.grid.ac/institutes/grid.483689.8
    160 schema:familyName Paca
    161 schema:givenName Agnieszka
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044265643.15
    163 rdf:type schema:Person
    164 sg:person.01123666274.06 schema:affiliation https://www.grid.ac/institutes/grid.250674.2
    165 schema:familyName Woltjen
    166 schema:givenName Knut
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123666274.06
    168 rdf:type schema:Person
    169 sg:person.01350502174.86 schema:affiliation https://www.grid.ac/institutes/grid.483689.8
    170 schema:familyName Kaji
    171 schema:givenName Keisuke
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350502174.86
    173 rdf:type schema:Person
    174 sg:person.0625076074.92 schema:affiliation https://www.grid.ac/institutes/grid.483689.8
    175 schema:familyName Norrby
    176 schema:givenName Katherine
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625076074.92
    178 rdf:type schema:Person
    179 sg:person.0661735626.03 schema:affiliation https://www.grid.ac/institutes/grid.250674.2
    180 schema:familyName Mileikovsky
    181 schema:givenName Maria
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661735626.03
    183 rdf:type schema:Person
    184 sg:pub.10.1038/nature05934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347899
    185 https://doi.org/10.1038/nature05934
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature05944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019109862
    188 https://doi.org/10.1038/nature05944
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature06403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020501792
    191 https://doi.org/10.1038/nature06403
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature06534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011992920
    194 https://doi.org/10.1038/nature06534
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature07056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743725
    197 https://doi.org/10.1038/nature07056
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature07863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019816783
    200 https://doi.org/10.1038/nature07863
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    203 https://doi.org/10.1038/nbt1374
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nbt780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011057005
    206 https://doi.org/10.1038/nbt780
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nbt957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039129492
    209 https://doi.org/10.1038/nbt957
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ncb1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025092428
    212 https://doi.org/10.1038/ncb1110
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ncb1372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009099013
    215 https://doi.org/10.1038/ncb1372
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/sj.onc.1208307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020853821
    218 https://doi.org/10.1038/sj.onc.1208307
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/0378-1119(91)90434-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1021517814
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.cell.2005.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046693583
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.cell.2006.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014573758
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.cell.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904856
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.stem.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649252
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.stem.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875023
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1073/pnas.0801017105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006009044
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1073/pnas.0811426106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024424498
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1097/ppo.0b013e31803c7245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048651655
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1126/science.1151526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905674
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1126/science.1154884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041856503
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1126/science.1162494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021871278
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1126/science.1164270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062458687
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1242/dev.02880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010917091
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1634/stemcells.2006-0813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019108901
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1634/stemcells.2008-1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049957596
    251 rdf:type schema:CreativeWork
    252 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
    253 schema:name Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
    254 Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
    255 rdf:type schema:Organization
    256 https://www.grid.ac/institutes/grid.250674.2 schema:alternateName Lunenfeld-Tanenbaum Research Institute
    257 schema:name Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.483689.8 schema:alternateName MRC Centre for Regenerative Medicine
    260 schema:name MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, UK
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...