Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

Alan G. Whittington, Anne M. Hofmeister, Peter I. Nabelek

ABSTRACT

The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation. More... »

PAGES

319

Journal

TITLE

Nature

ISSUE

7236

VOLUME

458

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07818

DOI

http://dx.doi.org/10.1038/nature07818

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009950290

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19295606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whittington", 
        "givenName": "Alan G.", 
        "id": "sg:person.01324636650.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324636650.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri 63130, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmeister", 
        "givenName": "Anne M.", 
        "id": "sg:person.014107304167.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014107304167.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Missouri", 
          "id": "https://www.grid.ac/institutes/grid.134936.a", 
          "name": [
            "Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nabelek", 
        "givenName": "Peter I.", 
        "id": "sg:person.01065233344.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065233344.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/98jb02468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005560452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1180/0026461026610015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00410-007-0265-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012549342", 
          "https://doi.org/10.1007/s00410-007-0265-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00410-007-0265-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012549342", 
          "https://doi.org/10.1007/s00410-007-0265-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359123a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016036976", 
          "https://doi.org/10.1038/359123a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/93tc00131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017547403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jb004464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020389763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl026036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-7065(03)00069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027554089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-7065(03)00069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027554089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am.2008.2821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034212784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gc001053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035124624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1999)027<0523:litbho>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035722811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am.2006.2105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040250852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petroj/39.4.689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040698820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1525-1314.1999.00204.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041029516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.1996.138.01.03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041297873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00531-007-0238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041897746", 
          "https://doi.org/10.1007/s00531-007-0238-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00531-007-0238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041897746", 
          "https://doi.org/10.1007/s00531-007-0238-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00269-005-0056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048929423", 
          "https://doi.org/10.1007/s00269-005-0056-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00269-005-0056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048929423", 
          "https://doi.org/10.1007/s00269-005-0056-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petrology/egi084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049622745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005je002429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051555648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.1993.074.01.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053426404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263593300000936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054884922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263593304000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054885817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/htrt115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058160776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.9.225.581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062658963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.9.228.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062659024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/0935-1221/2008/0020-1814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062698593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/g24424a.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062733842"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07818", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7236", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "458"
      }
    ], 
    "name": "Temperature-dependent thermal diffusivity of the Earth\u2019s crust and implications for magmatism", 
    "pagination": "319", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f670779563fb6d23d27fbb0cd11aa94a91486cecddaa3991ccf6bc7496e7636"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19295606"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07818"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009950290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07818", 
      "https://app.dimensions.ai/details/publication/pub.1009950290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47997_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07818"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07818'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07818'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07818'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07818'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07818 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N70aa58f71dc3497b9c340cf1cc958a44
4 schema:citation sg:pub.10.1007/s00269-005-0056-8
5 sg:pub.10.1007/s00410-007-0265-x
6 sg:pub.10.1007/s00531-007-0238-3
7 sg:pub.10.1038/359123a0
8 https://doi.org/10.1016/s1474-7065(03)00069-x
9 https://doi.org/10.1017/s0263593300000936
10 https://doi.org/10.1017/s0263593304000094
11 https://doi.org/10.1029/2005gc001053
12 https://doi.org/10.1029/2005je002429
13 https://doi.org/10.1029/2006gl026036
14 https://doi.org/10.1029/2006jb004464
15 https://doi.org/10.1029/93tc00131
16 https://doi.org/10.1029/98jb02468
17 https://doi.org/10.1046/j.1525-1314.1999.00204.x
18 https://doi.org/10.1068/htrt115
19 https://doi.org/10.1093/petroj/39.4.689
20 https://doi.org/10.1093/petrology/egi084
21 https://doi.org/10.1126/science.9.225.581
22 https://doi.org/10.1126/science.9.228.665
23 https://doi.org/10.1127/0935-1221/2008/0020-1814
24 https://doi.org/10.1130/0091-7613(1999)027<0523:litbho>2.3.co;2
25 https://doi.org/10.1130/g24424a.1
26 https://doi.org/10.1144/gsl.sp.1993.074.01.27
27 https://doi.org/10.1144/gsl.sp.1996.138.01.03
28 https://doi.org/10.1180/0026461026610015
29 https://doi.org/10.2138/am.2006.2105
30 https://doi.org/10.2138/am.2008.2821
31 schema:datePublished 2009-03
32 schema:datePublishedReg 2009-03-01
33 schema:description The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N756ef90e7558476a92400f8a1e2aa0ae
38 Na71b4e843cf0486a9abebce980e323ec
39 sg:journal.1018957
40 schema:name Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism
41 schema:pagination 319
42 schema:productId N10b363a2d52e4a4db555b16a14fab9bd
43 Na821a026485245988df1ef6e5d324f08
44 Ne6168f8aa0764e64a043ec3047d32b73
45 Nefa44a4efbba4503abaa336162776fcb
46 Nf60ffc1490544e3eb37ecd6edaae9ab4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009950290
48 https://doi.org/10.1038/nature07818
49 schema:sdDatePublished 2019-04-11T09:14
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N912e444c12494de5b9f72be6887af6a5
52 schema:url https://www.nature.com/articles/nature07818
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N10b363a2d52e4a4db555b16a14fab9bd schema:name dimensions_id
57 schema:value pub.1009950290
58 rdf:type schema:PropertyValue
59 N70aa58f71dc3497b9c340cf1cc958a44 rdf:first sg:person.01324636650.77
60 rdf:rest Nd4426aed506a4fbda9cfae15dfd61352
61 N756ef90e7558476a92400f8a1e2aa0ae schema:issueNumber 7236
62 rdf:type schema:PublicationIssue
63 N912e444c12494de5b9f72be6887af6a5 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N9e5935b51fc34fdeaa4a6a3e5446a1d4 rdf:first sg:person.01065233344.21
66 rdf:rest rdf:nil
67 Na71b4e843cf0486a9abebce980e323ec schema:volumeNumber 458
68 rdf:type schema:PublicationVolume
69 Na821a026485245988df1ef6e5d324f08 schema:name pubmed_id
70 schema:value 19295606
71 rdf:type schema:PropertyValue
72 Nd4426aed506a4fbda9cfae15dfd61352 rdf:first sg:person.014107304167.06
73 rdf:rest N9e5935b51fc34fdeaa4a6a3e5446a1d4
74 Ne6168f8aa0764e64a043ec3047d32b73 schema:name doi
75 schema:value 10.1038/nature07818
76 rdf:type schema:PropertyValue
77 Nefa44a4efbba4503abaa336162776fcb schema:name readcube_id
78 schema:value 2f670779563fb6d23d27fbb0cd11aa94a91486cecddaa3991ccf6bc7496e7636
79 rdf:type schema:PropertyValue
80 Nf60ffc1490544e3eb37ecd6edaae9ab4 schema:name nlm_unique_id
81 schema:value 0410462
82 rdf:type schema:PropertyValue
83 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
84 schema:name Earth Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
87 schema:name Geology
88 rdf:type schema:DefinedTerm
89 sg:journal.1018957 schema:issn 0090-0028
90 1476-4687
91 schema:name Nature
92 rdf:type schema:Periodical
93 sg:person.01065233344.21 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
94 schema:familyName Nabelek
95 schema:givenName Peter I.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065233344.21
97 rdf:type schema:Person
98 sg:person.01324636650.77 schema:affiliation https://www.grid.ac/institutes/grid.134936.a
99 schema:familyName Whittington
100 schema:givenName Alan G.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324636650.77
102 rdf:type schema:Person
103 sg:person.014107304167.06 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
104 schema:familyName Hofmeister
105 schema:givenName Anne M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014107304167.06
107 rdf:type schema:Person
108 sg:pub.10.1007/s00269-005-0056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048929423
109 https://doi.org/10.1007/s00269-005-0056-8
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00410-007-0265-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012549342
112 https://doi.org/10.1007/s00410-007-0265-x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00531-007-0238-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041897746
115 https://doi.org/10.1007/s00531-007-0238-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/359123a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016036976
118 https://doi.org/10.1038/359123a0
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s1474-7065(03)00069-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027554089
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/s0263593300000936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054884922
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/s0263593304000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054885817
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/2005gc001053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035124624
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/2005je002429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051555648
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/2006gl026036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553325
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/2006jb004464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020389763
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1029/93tc00131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017547403
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1029/98jb02468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005560452
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1046/j.1525-1314.1999.00204.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041029516
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1068/htrt115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058160776
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/petroj/39.4.689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040698820
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/petrology/egi084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049622745
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.9.225.581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062658963
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.9.228.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062659024
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1127/0935-1221/2008/0020-1814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062698593
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1130/0091-7613(1999)027<0523:litbho>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035722811
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1130/g24424a.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062733842
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1144/gsl.sp.1993.074.01.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053426404
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1144/gsl.sp.1996.138.01.03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041297873
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1180/0026461026610015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084053
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2138/am.2006.2105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040250852
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2138/am.2008.2821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212784
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.134936.a schema:alternateName University of Missouri
167 schema:name Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
170 schema:name Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri 63130, USA
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...