Tunable delay of Einstein–Podolsky–Rosen entanglement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02

AUTHORS

A. M. Marino, R. C. Pooser, V. Boyer, P. D. Lett

ABSTRACT

Entangled systems display correlations that are stronger than can be obtained classically. This makes entanglement an essential resource for a number of applications, such as quantum information processing, quantum computing and quantum communications. The ability to control the transfer of entanglement between different locations will play a key role in these quantum protocols and enable quantum networks. Such a transfer requires a system that can delay quantum correlations without significant degradation, effectively acting as a short-term quantum memory. An important benchmark for such systems is the ability to delay Einstein-Podolsky-Rosen (EPR) levels of entanglement and to be able to tune the delay. EPR entanglement is the basis for a number of quantum protocols, allowing the remote inference of the properties of one system (to better than its standard quantum limit) through measurements on the other correlated system. Here we show that a four-wave mixing process based on a double-lambda scheme in hot (85)Rb vapour allows us to obtain an optically tunable delay for EPR entangled beams of light. A significant maximum delay, of the order of the width of the cross-correlation function, is achieved. The four-wave mixing also preserves the quantum spatial correlations of the entangled beams. We take advantage of this property to delay entangled images, making this the first step towards a quantum memory for images. More... »

PAGES

859

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07751

DOI

http://dx.doi.org/10.1038/nature07751

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014918664

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19212406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marino", 
        "givenName": "A. M.", 
        "id": "sg:person.0717772763.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717772763.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pooser", 
        "givenName": "R. C.", 
        "id": "sg:person.013234102305.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234102305.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA", 
            "MUARC, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyer", 
        "givenName": "V.", 
        "id": "sg:person.0651657563.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651657563.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lett", 
        "givenName": "P. D.", 
        "id": "sg:person.01034221363.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034221363.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.78.043816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000176930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.043816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000176930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001133508", 
          "https://doi.org/10.1038/nature04315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001133508", 
          "https://doi.org/10.1038/nature04315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001133508", 
          "https://doi.org/10.1038/nature04315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.153602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006556578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.153602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006556578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012259793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012259793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012271323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012271323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.020302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013544657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.77.020302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013544657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013733299", 
          "https://doi.org/10.1038/nature04327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013733299", 
          "https://doi.org/10.1038/nature04327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013733299", 
          "https://doi.org/10.1038/nature04327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014398038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014398038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016856740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.010301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016856740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017984816", 
          "https://doi.org/10.1038/nature07127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020175597", 
          "https://doi.org/10.1038/nature06670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.143601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034485631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034485631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.012304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035200922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.012304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035200922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036310302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.093602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036310302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039145947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039145947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.223601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.223601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042051812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042051812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899196", 
          "https://doi.org/10.1038/17561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899196", 
          "https://doi.org/10.1038/17561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052986561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.060502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052986561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.40.913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060480784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.2752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.2752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.023801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.023801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.123903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.123903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.133602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.007369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065187653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-02", 
    "datePublishedReg": "2009-02-01", 
    "description": "Entangled systems display correlations that are stronger than can be obtained classically. This makes entanglement an essential resource for a number of applications, such as quantum information processing, quantum computing and quantum communications. The ability to control the transfer of entanglement between different locations will play a key role in these quantum protocols and enable quantum networks. Such a transfer requires a system that can delay quantum correlations without significant degradation, effectively acting as a short-term quantum memory. An important benchmark for such systems is the ability to delay Einstein-Podolsky-Rosen (EPR) levels of entanglement and to be able to tune the delay. EPR entanglement is the basis for a number of quantum protocols, allowing the remote inference of the properties of one system (to better than its standard quantum limit) through measurements on the other correlated system. Here we show that a four-wave mixing process based on a double-lambda scheme in hot (85)Rb vapour allows us to obtain an optically tunable delay for EPR entangled beams of light. A significant maximum delay, of the order of the width of the cross-correlation function, is achieved. The four-wave mixing also preserves the quantum spatial correlations of the entangled beams. We take advantage of this property to delay entangled images, making this the first step towards a quantum memory for images.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07751", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2786960", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7231", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "457"
      }
    ], 
    "name": "Tunable delay of Einstein\u2013Podolsky\u2013Rosen entanglement", 
    "pagination": "859", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47140b0e05f5446fe1a36146d00441edfdcf953579dd0e4241aaddef3db4bd3c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19212406"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07751"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014918664"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07751", 
      "https://app.dimensions.ai/details/publication/pub.1014918664"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000583.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07751"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07751'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07751'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07751'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07751'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07751 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nf589c190de5440429a23e0fd173f73a3
4 schema:citation sg:pub.10.1038/17561
5 sg:pub.10.1038/nature04315
6 sg:pub.10.1038/nature04327
7 sg:pub.10.1038/nature06670
8 sg:pub.10.1038/nature07127
9 https://doi.org/10.1103/physreva.40.913
10 https://doi.org/10.1103/physreva.60.2752
11 https://doi.org/10.1103/physreva.64.010301
12 https://doi.org/10.1103/physreva.69.012304
13 https://doi.org/10.1103/physreva.71.023801
14 https://doi.org/10.1103/physreva.77.020302
15 https://doi.org/10.1103/physreva.77.052313
16 https://doi.org/10.1103/physreva.78.043816
17 https://doi.org/10.1103/physrevlett.100.093601
18 https://doi.org/10.1103/physrevlett.100.093602
19 https://doi.org/10.1103/physrevlett.100.123903
20 https://doi.org/10.1103/physrevlett.100.133602
21 https://doi.org/10.1103/physrevlett.100.143601
22 https://doi.org/10.1103/physrevlett.100.223601
23 https://doi.org/10.1103/physrevlett.101.040501
24 https://doi.org/10.1103/physrevlett.68.3663
25 https://doi.org/10.1103/physrevlett.84.2722
26 https://doi.org/10.1103/physrevlett.98.060502
27 https://doi.org/10.1103/physrevlett.98.153601
28 https://doi.org/10.1103/physrevlett.99.143601
29 https://doi.org/10.1103/physrevlett.99.153602
30 https://doi.org/10.1103/revmodphys.74.347
31 https://doi.org/10.1103/revmodphys.77.513
32 https://doi.org/10.1126/science.1158275
33 https://doi.org/10.1364/oe.16.007369
34 schema:datePublished 2009-02
35 schema:datePublishedReg 2009-02-01
36 schema:description Entangled systems display correlations that are stronger than can be obtained classically. This makes entanglement an essential resource for a number of applications, such as quantum information processing, quantum computing and quantum communications. The ability to control the transfer of entanglement between different locations will play a key role in these quantum protocols and enable quantum networks. Such a transfer requires a system that can delay quantum correlations without significant degradation, effectively acting as a short-term quantum memory. An important benchmark for such systems is the ability to delay Einstein-Podolsky-Rosen (EPR) levels of entanglement and to be able to tune the delay. EPR entanglement is the basis for a number of quantum protocols, allowing the remote inference of the properties of one system (to better than its standard quantum limit) through measurements on the other correlated system. Here we show that a four-wave mixing process based on a double-lambda scheme in hot (85)Rb vapour allows us to obtain an optically tunable delay for EPR entangled beams of light. A significant maximum delay, of the order of the width of the cross-correlation function, is achieved. The four-wave mixing also preserves the quantum spatial correlations of the entangled beams. We take advantage of this property to delay entangled images, making this the first step towards a quantum memory for images.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N7b625bd03f704547b80801a6ac28c2d5
41 N8ab353b2aecf41fcaf5eb273767a40fb
42 sg:journal.1018957
43 schema:name Tunable delay of Einstein–Podolsky–Rosen entanglement
44 schema:pagination 859
45 schema:productId N32c1d2a448724cbdb2b203b42eee2555
46 N3c3b995a73e2434587b941db6c785b1d
47 N4a50573a43b04af89639592bbe6a2f65
48 N99bc292e2e4943bc9a7738cde86f8d0a
49 Ndf712e535b5f4960bc8f17c4fc133fc8
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014918664
51 https://doi.org/10.1038/nature07751
52 schema:sdDatePublished 2019-04-10T14:21
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0c86f7ec12d047fa9b048868b983156b
55 schema:url https://www.nature.com/articles/nature07751
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0c86f7ec12d047fa9b048868b983156b schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N2b2f098b79fb4ef292f0296a7dd439b3 rdf:first sg:person.013234102305.36
62 rdf:rest Nd84e0cd61c6f46ed84a39e093ca0380d
63 N32c1d2a448724cbdb2b203b42eee2555 schema:name pubmed_id
64 schema:value 19212406
65 rdf:type schema:PropertyValue
66 N3c3b995a73e2434587b941db6c785b1d schema:name readcube_id
67 schema:value 47140b0e05f5446fe1a36146d00441edfdcf953579dd0e4241aaddef3db4bd3c
68 rdf:type schema:PropertyValue
69 N4a50573a43b04af89639592bbe6a2f65 schema:name doi
70 schema:value 10.1038/nature07751
71 rdf:type schema:PropertyValue
72 N7b625bd03f704547b80801a6ac28c2d5 schema:issueNumber 7231
73 rdf:type schema:PublicationIssue
74 N8ab353b2aecf41fcaf5eb273767a40fb schema:volumeNumber 457
75 rdf:type schema:PublicationVolume
76 N91a6df6a5ecc4c4ab3b7c8cf85c67752 rdf:first sg:person.01034221363.51
77 rdf:rest rdf:nil
78 N99bc292e2e4943bc9a7738cde86f8d0a schema:name nlm_unique_id
79 schema:value 0410462
80 rdf:type schema:PropertyValue
81 Nd84e0cd61c6f46ed84a39e093ca0380d rdf:first sg:person.0651657563.39
82 rdf:rest N91a6df6a5ecc4c4ab3b7c8cf85c67752
83 Ndf712e535b5f4960bc8f17c4fc133fc8 schema:name dimensions_id
84 schema:value pub.1014918664
85 rdf:type schema:PropertyValue
86 Nf589c190de5440429a23e0fd173f73a3 rdf:first sg:person.0717772763.87
87 rdf:rest N2b2f098b79fb4ef292f0296a7dd439b3
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
92 schema:name Quantum Physics
93 rdf:type schema:DefinedTerm
94 sg:grant.2786960 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07751
95 rdf:type schema:MonetaryGrant
96 sg:journal.1018957 schema:issn 0090-0028
97 1476-4687
98 schema:name Nature
99 rdf:type schema:Periodical
100 sg:person.01034221363.51 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
101 schema:familyName Lett
102 schema:givenName P. D.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034221363.51
104 rdf:type schema:Person
105 sg:person.013234102305.36 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
106 schema:familyName Pooser
107 schema:givenName R. C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234102305.36
109 rdf:type schema:Person
110 sg:person.0651657563.39 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
111 schema:familyName Boyer
112 schema:givenName V.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651657563.39
114 rdf:type schema:Person
115 sg:person.0717772763.87 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
116 schema:familyName Marino
117 schema:givenName A. M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717772763.87
119 rdf:type schema:Person
120 sg:pub.10.1038/17561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042899196
121 https://doi.org/10.1038/17561
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature04315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001133508
124 https://doi.org/10.1038/nature04315
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature04327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013733299
127 https://doi.org/10.1038/nature04327
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature06670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020175597
130 https://doi.org/10.1038/nature06670
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature07127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984816
133 https://doi.org/10.1038/nature07127
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreva.40.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060480784
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreva.60.2752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495497
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreva.64.010301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016856740
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.69.012304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035200922
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.71.023801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500955
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.77.020302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013544657
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.77.052313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002837839
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.78.043816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000176930
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.100.093601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034485631
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.100.093602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036310302
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.100.123903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753135
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.100.133602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753183
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.100.143601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012259793
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.100.223601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039910007
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.101.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012271323
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.68.3663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804821
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.84.2722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014398038
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.98.060502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052986561
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.98.153601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042051812
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.99.143601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683946
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.99.153602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006556578
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/revmodphys.74.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039145947
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/revmodphys.77.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243892
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.1158275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457754
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1364/oe.16.007369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187653
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
186 schema:name Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
189 schema:name Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
190 MUARC, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...