A simple model of bipartite cooperation for ecological and organizational networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01-22

AUTHORS

Serguei Saavedra, Felix Reed-Tsochas, Brian Uzzi

ABSTRACT

In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society. More... »

PAGES

463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07532

DOI

http://dx.doi.org/10.1038/nature07532

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010576141

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19052545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Food Chain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Symbiosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK", 
            "CABDyN Complexity Centre,", 
            "Corporate Reputation Centre,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saavedra", 
        "givenName": "Serguei", 
        "id": "sg:person.01341323515.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341323515.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "CABDyN Complexity Centre,", 
            "James Martin Institute, Sa\u00efd Business School, University of Oxford, Oxford OX1 1HP, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reed-Tsochas", 
        "givenName": "Felix", 
        "id": "sg:person.01123161507.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123161507.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Kellogg School of Management and Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA", 
            "Haas School of Business, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uzzi", 
        "givenName": "Brian", 
        "id": "sg:person.0622237602.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622237602.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0706375104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005881093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2006.01444.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006932611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2699.2006.01444.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006932611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5412.278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008162245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2006.3548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009098443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1461-0248.2003.00403.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013517496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00167053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013735240", 
          "https://doi.org/10.1007/bf00167053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2002)083[2416:gpippm]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014936146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1633576100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015871134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017620878", 
          "https://doi.org/10.1038/nature04605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017620878", 
          "https://doi.org/10.1038/nature04605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017620878", 
          "https://doi.org/10.1038/nature04605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0060102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019482099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1156269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026095136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031190439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1461-0248.2001.00218.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031972070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.200327197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032772464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0710672105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034807292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2007.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036865190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5328.918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040967727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046850958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35004572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049704621", 
          "https://doi.org/10.1038/35004572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35004572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049704621", 
          "https://doi.org/10.1038/35004572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050547263", 
          "https://doi.org/10.1038/nature02327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050547263", 
          "https://doi.org/10.1038/nature02327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050978514", 
          "https://doi.org/10.1038/nature05956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2096399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069758235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2265575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069854851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3088904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070193518"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01-22", 
    "datePublishedReg": "2009-01-22", 
    "description": "In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07532", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3766137", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7228", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "457"
      }
    ], 
    "name": "A simple model of bipartite cooperation for ecological and organizational networks", 
    "pagination": "463", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3262b077eb5b9ced027edc54d6364598782f4085d42bf0a2893ca32a5f59061c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19052545"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07532"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010576141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07532", 
      "https://app.dimensions.ai/details/publication/pub.1010576141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07532"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07532'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07532'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07532'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07532'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      62 URIs      28 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07532 schema:about N197fd7bd22824b63b46aba5f788b2405
2 N48e8309749c747218bd06d6a752d789a
3 N86359b9719f146e19bfa072aac8c978e
4 N898c33f5d67c4400b8615c51da592611
5 N8a8152cf17e3429fb7367a34b5912a11
6 N93e7a58d732a4177926592efe5f1e4b7
7 Nba6c863232604c6296accc6007ac27ab
8 Nf18db4dcc6004c9d87585cb708f52282
9 anzsrc-for:06
10 anzsrc-for:0602
11 schema:author N269476327d56476e8725fa88c988a7f0
12 schema:citation sg:pub.10.1007/bf00167053
13 sg:pub.10.1038/35004572
14 sg:pub.10.1038/nature02327
15 sg:pub.10.1038/nature03288
16 sg:pub.10.1038/nature04605
17 sg:pub.10.1038/nature05956
18 https://doi.org/10.1016/j.jtbi.2007.08.004
19 https://doi.org/10.1046/j.1461-0248.2001.00218.x
20 https://doi.org/10.1046/j.1461-0248.2003.00403.x
21 https://doi.org/10.1073/pnas.0706375104
22 https://doi.org/10.1073/pnas.0710672105
23 https://doi.org/10.1073/pnas.122653799
24 https://doi.org/10.1073/pnas.1633576100
25 https://doi.org/10.1073/pnas.200327197
26 https://doi.org/10.1098/rspb.2006.3548
27 https://doi.org/10.1111/j.1365-2699.2006.01444.x
28 https://doi.org/10.1126/science.1156269
29 https://doi.org/10.1126/science.277.5328.918
30 https://doi.org/10.1126/science.284.5412.278
31 https://doi.org/10.1371/journal.pbio.0050031
32 https://doi.org/10.1371/journal.pbio.0060102
33 https://doi.org/10.1890/0012-9658(2002)083[2416:gpippm]2.0.co;2
34 https://doi.org/10.1890/04-0957
35 https://doi.org/10.2307/2096399
36 https://doi.org/10.2307/2265575
37 https://doi.org/10.2307/3088904
38 schema:datePublished 2009-01-22
39 schema:datePublishedReg 2009-01-22
40 schema:description In theoretical ecology, simple stochastic models that satisfy two basic conditions about the distribution of niche values and feeding ranges have proved successful in reproducing the overall structural properties of real food webs, using species richness and connectance as the only input parameters. Recently, more detailed models have incorporated higher levels of constraint in order to reproduce the actual links observed in real food webs. Here, building on previous stochastic models of consumer-resource interactions between species, we propose a highly parsimonious model that can reproduce the overall bipartite structure of cooperative partner-partner interactions, as exemplified by plant-animal mutualistic networks. Our stochastic model of bipartite cooperation uses simple specialization and interaction rules, and only requires three empirical input parameters. We test the bipartite cooperation model on ten large pollination data sets that have been compiled in the literature, and find that it successfully replicates the degree distribution, nestedness and modularity of the empirical networks. These properties are regarded as key to understanding cooperation in mutualistic networks. We also apply our model to an extensive data set of two classes of company engaged in joint production in the garment industry. Using the same metrics, we find that the network of manufacturer-contractor interactions exhibits similar structural patterns to plant-animal pollination networks. This surprising correspondence between ecological and organizational networks suggests that the simple rules of cooperation that generate bipartite networks may be generic, and could prove relevant in many different domains, ranging from biological systems to human society.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N4ef366943f914e11bfe57d2f55e0d5cb
45 N6591e68f63aa4efdaca4301be3951f08
46 sg:journal.1018957
47 schema:name A simple model of bipartite cooperation for ecological and organizational networks
48 schema:pagination 463
49 schema:productId N846416126ba04685b40bb00aceb98f41
50 N8ef206ffb207465082dbe400dfb5295a
51 Nc7e34e2454e048a98a177c6ec9faab00
52 Nd93a908837f7450d916f0f372cea4f8f
53 Ne9b8d4ef3c544db291ec8604659ba814
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576141
55 https://doi.org/10.1038/nature07532
56 schema:sdDatePublished 2019-04-11T01:46
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nf93e2430aa3a42599c1b4eb3c2f06de4
59 schema:url https://www.nature.com/articles/nature07532
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N10ebd62440184e03b98a1a9eefc241ef rdf:first sg:person.01123161507.82
64 rdf:rest N29c27af35b624bea8fabee5711fa7fa9
65 N197fd7bd22824b63b46aba5f788b2405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Ecology
67 rdf:type schema:DefinedTerm
68 N269476327d56476e8725fa88c988a7f0 rdf:first sg:person.01341323515.51
69 rdf:rest N10ebd62440184e03b98a1a9eefc241ef
70 N29c27af35b624bea8fabee5711fa7fa9 rdf:first sg:person.0622237602.61
71 rdf:rest rdf:nil
72 N48e8309749c747218bd06d6a752d789a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Computer Simulation
74 rdf:type schema:DefinedTerm
75 N4ef366943f914e11bfe57d2f55e0d5cb schema:issueNumber 7228
76 rdf:type schema:PublicationIssue
77 N6591e68f63aa4efdaca4301be3951f08 schema:volumeNumber 457
78 rdf:type schema:PublicationVolume
79 N846416126ba04685b40bb00aceb98f41 schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 N86359b9719f146e19bfa072aac8c978e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Plant Physiological Phenomena
84 rdf:type schema:DefinedTerm
85 N898c33f5d67c4400b8615c51da592611 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Stochastic Processes
87 rdf:type schema:DefinedTerm
88 N8a8152cf17e3429fb7367a34b5912a11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Models, Biological
90 rdf:type schema:DefinedTerm
91 N8ef206ffb207465082dbe400dfb5295a schema:name readcube_id
92 schema:value 3262b077eb5b9ced027edc54d6364598782f4085d42bf0a2893ca32a5f59061c
93 rdf:type schema:PropertyValue
94 N93e7a58d732a4177926592efe5f1e4b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Symbiosis
96 rdf:type schema:DefinedTerm
97 Nba6c863232604c6296accc6007ac27ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Food Chain
99 rdf:type schema:DefinedTerm
100 Nc7e34e2454e048a98a177c6ec9faab00 schema:name doi
101 schema:value 10.1038/nature07532
102 rdf:type schema:PropertyValue
103 Nd93a908837f7450d916f0f372cea4f8f schema:name dimensions_id
104 schema:value pub.1010576141
105 rdf:type schema:PropertyValue
106 Ne9b8d4ef3c544db291ec8604659ba814 schema:name pubmed_id
107 schema:value 19052545
108 rdf:type schema:PropertyValue
109 Nf18db4dcc6004c9d87585cb708f52282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Animals
111 rdf:type schema:DefinedTerm
112 Nf93e2430aa3a42599c1b4eb3c2f06de4 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biological Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
118 schema:name Ecology
119 rdf:type schema:DefinedTerm
120 sg:grant.3766137 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07532
121 rdf:type schema:MonetaryGrant
122 sg:journal.1018957 schema:issn 0090-0028
123 1476-4687
124 schema:name Nature
125 rdf:type schema:Periodical
126 sg:person.01123161507.82 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
127 schema:familyName Reed-Tsochas
128 schema:givenName Felix
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123161507.82
130 rdf:type schema:Person
131 sg:person.01341323515.51 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
132 schema:familyName Saavedra
133 schema:givenName Serguei
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341323515.51
135 rdf:type schema:Person
136 sg:person.0622237602.61 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
137 schema:familyName Uzzi
138 schema:givenName Brian
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622237602.61
140 rdf:type schema:Person
141 sg:pub.10.1007/bf00167053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013735240
142 https://doi.org/10.1007/bf00167053
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/35004572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049704621
145 https://doi.org/10.1038/35004572
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature02327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050547263
148 https://doi.org/10.1038/nature02327
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
151 https://doi.org/10.1038/nature03288
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature04605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017620878
154 https://doi.org/10.1038/nature04605
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature05956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050978514
157 https://doi.org/10.1038/nature05956
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jtbi.2007.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036865190
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1046/j.1461-0248.2001.00218.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031972070
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1046/j.1461-0248.2003.00403.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013517496
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.0706375104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005881093
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.0710672105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034807292
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.1633576100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015871134
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.200327197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032772464
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1098/rspb.2006.3548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009098443
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1365-2699.2006.01444.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006932611
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1156269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026095136
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.277.5328.918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040967727
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.284.5412.278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008162245
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1371/journal.pbio.0050031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046850958
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pbio.0060102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019482099
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1890/0012-9658(2002)083[2416:gpippm]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014936146
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1890/04-0957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031190439
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2307/2096399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069758235
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2307/2265575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069854851
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/3088904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070193518
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
200 schema:name Haas School of Business, University of California, Berkeley, California 94720, USA
201 Kellogg School of Management and Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
204 schema:name CABDyN Complexity Centre,
205 Corporate Reputation Centre,
206 Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
207 James Martin Institute, Saïd Business School, University of Oxford, Oxford OX1 1HP, UK
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...