Silicon-chip-based ultrafast optical oscilloscope View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

Mark A. Foster, Reza Salem, David F. Geraghty, Amy C. Turner-Foster, Michal Lipson, Alexander L. Gaeta

ABSTRACT

With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07430

DOI

http://dx.doi.org/10.1038/nature07430

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045526534

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18987739


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foster", 
        "givenName": "Mark A.", 
        "id": "sg:person.01153454320.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153454320.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salem", 
        "givenName": "Reza", 
        "id": "sg:person.01146762657.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146762657.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geraghty", 
        "givenName": "David F.", 
        "id": "sg:person.01301145133.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301145133.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner-Foster", 
        "givenName": "Amy C.", 
        "id": "sg:person.016023442636.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023442636.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lipson", 
        "givenName": "Michal", 
        "id": "sg:person.01334071172.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaeta", 
        "givenName": "Alexander L.", 
        "id": "sg:person.01134377750.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134377750.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2007.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002962288", 
          "https://doi.org/10.1038/nphoton.2007.253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.004786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011472808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.004357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018651751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.011225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026215824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027569270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200723302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038618943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432022", 
          "https://doi.org/10.1038/nature06402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.002299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.003853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049373775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052098644", 
          "https://doi.org/10.1038/nphys705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2799741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3035549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057896928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1986v029n07abeh003462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058171495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.301659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061147790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.831018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.848351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061150017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2006.876304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.38.003810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065114404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.43.000483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.15.001242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.18.000823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065214416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.001644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.003049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.003523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.001408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cleo.2008.4551572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093230280"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07430", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7218", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "456"
      }
    ], 
    "name": "Silicon-chip-based ultrafast optical oscilloscope", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8dcc1d7c4337efc8769779f5b5c14e11394b91805445fe032289fcbeaa29986"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18987739"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07430"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045526534"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07430", 
      "https://app.dimensions.ai/details/publication/pub.1045526534"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07430"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07430'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07430 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Neba19ed4190048dc825aec611a6a644c
4 schema:citation sg:pub.10.1038/nature04932
5 sg:pub.10.1038/nature06402
6 sg:pub.10.1038/nphoton.2007.253
7 sg:pub.10.1038/nphys705
8 https://doi.org/10.1002/pssa.200723302
9 https://doi.org/10.1063/1.111177
10 https://doi.org/10.1063/1.112620
11 https://doi.org/10.1063/1.2799741
12 https://doi.org/10.1063/1.3035549
13 https://doi.org/10.1070/pu1986v029n07abeh003462
14 https://doi.org/10.1109/3.301659
15 https://doi.org/10.1109/3.831018
16 https://doi.org/10.1109/3.848351
17 https://doi.org/10.1109/cleo.2008.4551572
18 https://doi.org/10.1109/jstqe.2006.876304
19 https://doi.org/10.1364/ao.38.003810
20 https://doi.org/10.1364/ao.43.000483
21 https://doi.org/10.1364/josab.15.001242
22 https://doi.org/10.1364/oe.14.003853
23 https://doi.org/10.1364/oe.14.004357
24 https://doi.org/10.1364/oe.14.004786
25 https://doi.org/10.1364/oe.15.002299
26 https://doi.org/10.1364/oe.15.011225
27 https://doi.org/10.1364/oe.15.012949
28 https://doi.org/10.1364/ol.18.000823
29 https://doi.org/10.1364/ol.24.000783
30 https://doi.org/10.1364/ol.24.001644
31 https://doi.org/10.1364/ol.31.003049
32 https://doi.org/10.1364/ol.31.003523
33 https://doi.org/10.1364/ol.32.001408
34 schema:datePublished 2008-11
35 schema:datePublishedReg 2008-11-01
36 schema:description With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N5497a7e394fc4062bd22db60a2da904f
41 Nc2afe2deb23a42508bc2facc0b06e319
42 sg:journal.1018957
43 schema:name Silicon-chip-based ultrafast optical oscilloscope
44 schema:pagination 81
45 schema:productId Nad219953302049b0a737dba41fcc732c
46 Nb5acd2067bda47e18cff60b471de9672
47 Nc9687e1c156b416f9843ace4019eee88
48 Nd27d9695bf244c4fbeb4fe63029fa94c
49 Nf4cf90a8f9d041be91ce5c4e7b9d7b66
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045526534
51 https://doi.org/10.1038/nature07430
52 schema:sdDatePublished 2019-04-11T00:04
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nefb62f5df4a04b1fb0b3242777935f56
55 schema:url https://www.nature.com/articles/nature07430
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0a73687738e34607bde26f5cfb0ac1ee rdf:first sg:person.01134377750.87
60 rdf:rest rdf:nil
61 N2ddb1dc73bc74f3288a3fdfebb574e34 schema:name School of Applied and Engineering Physics,
62 rdf:type schema:Organization
63 N2e5bff14f39a4045b96c9416aba07e51 rdf:first sg:person.01301145133.42
64 rdf:rest N55cfa50428aa4f938aa8fa5ee7d06c0a
65 N5497a7e394fc4062bd22db60a2da904f schema:volumeNumber 456
66 rdf:type schema:PublicationVolume
67 N55cfa50428aa4f938aa8fa5ee7d06c0a rdf:first sg:person.016023442636.26
68 rdf:rest Ndd59ee38dc22414abdcfb21f5929fce1
69 Na3d93b5c82264f489101289c5030166c rdf:first sg:person.01146762657.50
70 rdf:rest N2e5bff14f39a4045b96c9416aba07e51
71 Na61a9eede8854a648d71c5d0356e3c42 schema:name School of Applied and Engineering Physics,
72 rdf:type schema:Organization
73 Nad219953302049b0a737dba41fcc732c schema:name readcube_id
74 schema:value d8dcc1d7c4337efc8769779f5b5c14e11394b91805445fe032289fcbeaa29986
75 rdf:type schema:PropertyValue
76 Nb5acd2067bda47e18cff60b471de9672 schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 Nc2afe2deb23a42508bc2facc0b06e319 schema:issueNumber 7218
80 rdf:type schema:PublicationIssue
81 Nc9687e1c156b416f9843ace4019eee88 schema:name dimensions_id
82 schema:value pub.1045526534
83 rdf:type schema:PropertyValue
84 Nd27d9695bf244c4fbeb4fe63029fa94c schema:name doi
85 schema:value 10.1038/nature07430
86 rdf:type schema:PropertyValue
87 Nd5a995d0cf3b43ed9940acf1c88fe0d7 schema:name School of Applied and Engineering Physics,
88 rdf:type schema:Organization
89 Nd6d5c458703d48cd8d74aea07f03449e schema:name School of Applied and Engineering Physics,
90 rdf:type schema:Organization
91 Ndd59ee38dc22414abdcfb21f5929fce1 rdf:first sg:person.01334071172.02
92 rdf:rest N0a73687738e34607bde26f5cfb0ac1ee
93 Neba19ed4190048dc825aec611a6a644c rdf:first sg:person.01153454320.19
94 rdf:rest Na3d93b5c82264f489101289c5030166c
95 Nefb62f5df4a04b1fb0b3242777935f56 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nf4cf90a8f9d041be91ce5c4e7b9d7b66 schema:name pubmed_id
98 schema:value 18987739
99 rdf:type schema:PropertyValue
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
104 schema:name Optical Physics
105 rdf:type schema:DefinedTerm
106 sg:journal.1018957 schema:issn 0090-0028
107 1476-4687
108 schema:name Nature
109 rdf:type schema:Periodical
110 sg:person.01134377750.87 schema:affiliation Nd6d5c458703d48cd8d74aea07f03449e
111 schema:familyName Gaeta
112 schema:givenName Alexander L.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134377750.87
114 rdf:type schema:Person
115 sg:person.01146762657.50 schema:affiliation Nd5a995d0cf3b43ed9940acf1c88fe0d7
116 schema:familyName Salem
117 schema:givenName Reza
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146762657.50
119 rdf:type schema:Person
120 sg:person.01153454320.19 schema:affiliation N2ddb1dc73bc74f3288a3fdfebb574e34
121 schema:familyName Foster
122 schema:givenName Mark A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153454320.19
124 rdf:type schema:Person
125 sg:person.01301145133.42 schema:affiliation Na61a9eede8854a648d71c5d0356e3c42
126 schema:familyName Geraghty
127 schema:givenName David F.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301145133.42
129 rdf:type schema:Person
130 sg:person.01334071172.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
131 schema:familyName Lipson
132 schema:givenName Michal
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02
134 rdf:type schema:Person
135 sg:person.016023442636.26 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
136 schema:familyName Turner-Foster
137 schema:givenName Amy C.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023442636.26
139 rdf:type schema:Person
140 sg:pub.10.1038/nature04932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048547410
141 https://doi.org/10.1038/nature04932
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature06402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432022
144 https://doi.org/10.1038/nature06402
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphoton.2007.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962288
147 https://doi.org/10.1038/nphoton.2007.253
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nphys705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052098644
150 https://doi.org/10.1038/nphys705
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/pssa.200723302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038618943
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.111177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658736
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.112620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660173
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.2799741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868093
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.3035549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057896928
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1070/pu1986v029n07abeh003462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058171495
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/3.301659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061147790
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/3.831018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149885
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/3.848351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061150017
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/cleo.2008.4551572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093230280
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/jstqe.2006.876304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335211
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/ao.38.003810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065114404
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/ao.43.000483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118737
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/josab.15.001242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168939
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1364/oe.14.003853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049373775
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1364/oe.14.004357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018651751
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1364/oe.14.004786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011472808
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1364/oe.15.002299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046385298
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/oe.15.011225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026215824
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1364/oe.15.012949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027569270
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1364/ol.18.000823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065214416
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/ol.24.000783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218608
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/ol.24.001644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218874
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/ol.31.003049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224319
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/ol.31.003523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224453
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1364/ol.32.001408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224937
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
205 schema:name School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...