Silicon-chip-based ultrafast optical oscilloscope View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

Mark A. Foster, Reza Salem, David F. Geraghty, Amy C. Turner-Foster, Michal Lipson, Alexander L. Gaeta

ABSTRACT

With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07430

DOI

http://dx.doi.org/10.1038/nature07430

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045526534

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18987739


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foster", 
        "givenName": "Mark A.", 
        "id": "sg:person.01153454320.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153454320.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salem", 
        "givenName": "Reza", 
        "id": "sg:person.01146762657.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146762657.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geraghty", 
        "givenName": "David F.", 
        "id": "sg:person.01301145133.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301145133.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner-Foster", 
        "givenName": "Amy C.", 
        "id": "sg:person.016023442636.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023442636.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lipson", 
        "givenName": "Michal", 
        "id": "sg:person.01334071172.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Applied and Engineering Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaeta", 
        "givenName": "Alexander L.", 
        "id": "sg:person.01134377750.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134377750.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2007.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002962288", 
          "https://doi.org/10.1038/nphoton.2007.253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.004786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011472808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.004357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018651751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.011225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026215824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027569270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200723302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038618943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045432022", 
          "https://doi.org/10.1038/nature06402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.002299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046385298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048547410", 
          "https://doi.org/10.1038/nature04932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.003853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049373775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052098644", 
          "https://doi.org/10.1038/nphys705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2799741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3035549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057896928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1986v029n07abeh003462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058171495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.301659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061147790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.831018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.848351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061150017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2006.876304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061335211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.38.003810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065114404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.43.000483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.15.001242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.18.000823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065214416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.001644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.003049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.003523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.001408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cleo.2008.4551572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093230280"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07430", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7218", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "456"
      }
    ], 
    "name": "Silicon-chip-based ultrafast optical oscilloscope", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8dcc1d7c4337efc8769779f5b5c14e11394b91805445fe032289fcbeaa29986"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18987739"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07430"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045526534"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07430", 
      "https://app.dimensions.ai/details/publication/pub.1045526534"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07430"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07430'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07430'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07430 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Na7a98e479b85403ea2972a43edff9cd8
4 schema:citation sg:pub.10.1038/nature04932
5 sg:pub.10.1038/nature06402
6 sg:pub.10.1038/nphoton.2007.253
7 sg:pub.10.1038/nphys705
8 https://doi.org/10.1002/pssa.200723302
9 https://doi.org/10.1063/1.111177
10 https://doi.org/10.1063/1.112620
11 https://doi.org/10.1063/1.2799741
12 https://doi.org/10.1063/1.3035549
13 https://doi.org/10.1070/pu1986v029n07abeh003462
14 https://doi.org/10.1109/3.301659
15 https://doi.org/10.1109/3.831018
16 https://doi.org/10.1109/3.848351
17 https://doi.org/10.1109/cleo.2008.4551572
18 https://doi.org/10.1109/jstqe.2006.876304
19 https://doi.org/10.1364/ao.38.003810
20 https://doi.org/10.1364/ao.43.000483
21 https://doi.org/10.1364/josab.15.001242
22 https://doi.org/10.1364/oe.14.003853
23 https://doi.org/10.1364/oe.14.004357
24 https://doi.org/10.1364/oe.14.004786
25 https://doi.org/10.1364/oe.15.002299
26 https://doi.org/10.1364/oe.15.011225
27 https://doi.org/10.1364/oe.15.012949
28 https://doi.org/10.1364/ol.18.000823
29 https://doi.org/10.1364/ol.24.000783
30 https://doi.org/10.1364/ol.24.001644
31 https://doi.org/10.1364/ol.31.003049
32 https://doi.org/10.1364/ol.31.003523
33 https://doi.org/10.1364/ol.32.001408
34 schema:datePublished 2008-11
35 schema:datePublishedReg 2008-11-01
36 schema:description With the realization of faster telecommunication data rates and an expanding interest in ultrafast chemical and physical phenomena, it has become important to develop techniques that enable simple measurements of optical waveforms with subpicosecond resolution. State-of-the-art oscilloscopes with high-speed photodetectors provide single-shot waveform measurement with 30-ps resolution. Although multiple-shot sampling techniques can achieve few-picosecond resolution, single-shot measurements are necessary to analyse events that are rapidly varying in time, asynchronous, or may occur only once. Further improvements in single-shot resolution are challenging, owing to microelectronic bandwidth limitations. To overcome these limitations, researchers have looked towards all-optical techniques because of the large processing bandwidths that photonics allow. This has generated an explosion of interest in the integration of photonics on standard electronics platforms, which has spawned the field of silicon photonics and promises to enable the next generation of computer processing units and advances in high-bandwidth communications. For the success of silicon photonics in these areas, on-chip optical signal-processing for optical performance monitoring will prove critical. Beyond next-generation communications, silicon-compatible ultrafast metrology would be of great utility to many fundamental research fields, as evident from the scientific impact that ultrafast measurement techniques continue to make. Here, using time-to-frequency conversion via the nonlinear process of four-wave mixing on a silicon chip, we demonstrate a waveform measurement technology within a silicon-photonic platform. We measure optical waveforms with 220-fs resolution over lengths greater than 100 ps, which represent the largest record-length-to-resolution ratio (>450) of any single-shot-capable picosecond waveform measurement technique. Our implementation allows for single-shot measurements and uses only highly developed electronic and optical materials of complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator technology and single-mode optical fibre. The mature silicon-on-insulator platform and the ability to integrate electronics with these CMOS-compatible photonics offer great promise to extend this technology into commonplace bench-top and chip-scale instruments.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf Ndf7936285cd34bcb9196f920e0378c19
41 Nfca7764f28224d84b499d0d1c84e5aab
42 sg:journal.1018957
43 schema:name Silicon-chip-based ultrafast optical oscilloscope
44 schema:pagination 81
45 schema:productId N0250370c7f014f108b2050f3c069ab8d
46 N2a43f4423b4a4d77bb4ee6a949b7626f
47 N7f4938a2715f42048df9e0de6417aa7b
48 Nb5f47fb367144096b99791de697c6d9f
49 Ndd77ed7411a64daeb0603b6617ffd6ec
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045526534
51 https://doi.org/10.1038/nature07430
52 schema:sdDatePublished 2019-04-11T00:04
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N13e7359520cc4473bb7d4f3bd25aa96f
55 schema:url https://www.nature.com/articles/nature07430
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0250370c7f014f108b2050f3c069ab8d schema:name nlm_unique_id
60 schema:value 0410462
61 rdf:type schema:PropertyValue
62 N13e7359520cc4473bb7d4f3bd25aa96f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N18de938eed27463186820c74e6ad459b rdf:first sg:person.01134377750.87
65 rdf:rest rdf:nil
66 N1c87b3ea066943c29bb2b3121ae28d19 rdf:first sg:person.01301145133.42
67 rdf:rest Na608dd56ef18499990c58d090f44c897
68 N2a43f4423b4a4d77bb4ee6a949b7626f schema:name doi
69 schema:value 10.1038/nature07430
70 rdf:type schema:PropertyValue
71 N30b1906da9d145bd9a7f11a52f3d993a schema:name School of Applied and Engineering Physics,
72 rdf:type schema:Organization
73 N57854290b9e84dcaa2d18d42f42ccfa8 rdf:first sg:person.01146762657.50
74 rdf:rest N1c87b3ea066943c29bb2b3121ae28d19
75 N7623b196e5ac4756b92f3910ce66d08d schema:name School of Applied and Engineering Physics,
76 rdf:type schema:Organization
77 N7f4938a2715f42048df9e0de6417aa7b schema:name pubmed_id
78 schema:value 18987739
79 rdf:type schema:PropertyValue
80 N8353cb575c95433489f6f6c1d3ed92a5 schema:name School of Applied and Engineering Physics,
81 rdf:type schema:Organization
82 N9c2cfd6c27cb4ca5aa8988447542807c rdf:first sg:person.01334071172.02
83 rdf:rest N18de938eed27463186820c74e6ad459b
84 Na608dd56ef18499990c58d090f44c897 rdf:first sg:person.016023442636.26
85 rdf:rest N9c2cfd6c27cb4ca5aa8988447542807c
86 Na7a98e479b85403ea2972a43edff9cd8 rdf:first sg:person.01153454320.19
87 rdf:rest N57854290b9e84dcaa2d18d42f42ccfa8
88 Nb5f47fb367144096b99791de697c6d9f schema:name dimensions_id
89 schema:value pub.1045526534
90 rdf:type schema:PropertyValue
91 Ndd77ed7411a64daeb0603b6617ffd6ec schema:name readcube_id
92 schema:value d8dcc1d7c4337efc8769779f5b5c14e11394b91805445fe032289fcbeaa29986
93 rdf:type schema:PropertyValue
94 Ndf7936285cd34bcb9196f920e0378c19 schema:issueNumber 7218
95 rdf:type schema:PublicationIssue
96 Nfad6cb4973944baa884ddbf04ac838e3 schema:name School of Applied and Engineering Physics,
97 rdf:type schema:Organization
98 Nfca7764f28224d84b499d0d1c84e5aab schema:volumeNumber 456
99 rdf:type schema:PublicationVolume
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
104 schema:name Optical Physics
105 rdf:type schema:DefinedTerm
106 sg:journal.1018957 schema:issn 0090-0028
107 1476-4687
108 schema:name Nature
109 rdf:type schema:Periodical
110 sg:person.01134377750.87 schema:affiliation Nfad6cb4973944baa884ddbf04ac838e3
111 schema:familyName Gaeta
112 schema:givenName Alexander L.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134377750.87
114 rdf:type schema:Person
115 sg:person.01146762657.50 schema:affiliation N30b1906da9d145bd9a7f11a52f3d993a
116 schema:familyName Salem
117 schema:givenName Reza
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146762657.50
119 rdf:type schema:Person
120 sg:person.01153454320.19 schema:affiliation N8353cb575c95433489f6f6c1d3ed92a5
121 schema:familyName Foster
122 schema:givenName Mark A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153454320.19
124 rdf:type schema:Person
125 sg:person.01301145133.42 schema:affiliation N7623b196e5ac4756b92f3910ce66d08d
126 schema:familyName Geraghty
127 schema:givenName David F.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301145133.42
129 rdf:type schema:Person
130 sg:person.01334071172.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
131 schema:familyName Lipson
132 schema:givenName Michal
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334071172.02
134 rdf:type schema:Person
135 sg:person.016023442636.26 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
136 schema:familyName Turner-Foster
137 schema:givenName Amy C.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016023442636.26
139 rdf:type schema:Person
140 sg:pub.10.1038/nature04932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048547410
141 https://doi.org/10.1038/nature04932
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature06402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432022
144 https://doi.org/10.1038/nature06402
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nphoton.2007.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002962288
147 https://doi.org/10.1038/nphoton.2007.253
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nphys705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052098644
150 https://doi.org/10.1038/nphys705
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/pssa.200723302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038618943
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.111177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658736
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.112620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660173
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.2799741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868093
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.3035549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057896928
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1070/pu1986v029n07abeh003462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058171495
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/3.301659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061147790
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/3.831018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149885
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/3.848351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061150017
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/cleo.2008.4551572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093230280
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/jstqe.2006.876304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061335211
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/ao.38.003810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065114404
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/ao.43.000483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118737
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/josab.15.001242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168939
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1364/oe.14.003853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049373775
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1364/oe.14.004357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018651751
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1364/oe.14.004786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011472808
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1364/oe.15.002299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046385298
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/oe.15.011225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026215824
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1364/oe.15.012949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027569270
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1364/ol.18.000823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065214416
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/ol.24.000783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218608
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/ol.24.001644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218874
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/ol.31.003049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224319
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1364/ol.31.003523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224453
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1364/ol.32.001408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224937
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
205 schema:name School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...