Reconstruction of non-classical cavity field states with snapshots of their decoherence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09

AUTHORS

Samuel Deléglise, Igor Dotsenko, Clément Sayrin, Julien Bernu, Michel Brune, Jean-Michel Raimond, Serge Haroche

ABSTRACT

The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies through measurements on different realizations. Reconstructing the state of a set of trapped particles shielded from their environment is an important step in the investigation of the quantum-classical boundary. Although trapped-atom state reconstructions have been achieved, it is challenging to perform similar experiments with trapped photons because cavities that can store light for very long times are required. Here we report the complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured. Atoms crossing the cavity one by one are used to extract information about the field. We obtain images of coherent states, Fock states with a definite photon number and 'Schrödinger cat' states (superpositions of coherent states with different phases). These states are equivalently represented by their density matrices or Wigner functions. Quasi-classical coherent states have a Gaussian-shaped Wigner function, whereas the Wigner functions of Fock and Schrödinger cat states show oscillations and negativities revealing quantum interferences. Cavity damping induces decoherence that quickly washes out such oscillations. We observe this process and follow the evolution of decoherence by reconstructing snapshots of Schrödinger cat states at successive times. Our reconstruction procedure is a useful tool for further decoherence and quantum feedback studies of fields trapped in one or two cavities. More... »

PAGES

510

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07288

DOI

http://dx.doi.org/10.1038/nature07288

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018429633

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18818653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del\u00e9glise", 
        "givenName": "Samuel", 
        "id": "sg:person.01076622774.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076622774.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Coll\u00e8ge de France", 
          "id": "https://www.grid.ac/institutes/grid.410533.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France", 
            "Coll\u00e8ge de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dotsenko", 
        "givenName": "Igor", 
        "id": "sg:person.01240153621.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240153621.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayrin", 
        "givenName": "Cl\u00e9ment", 
        "id": "sg:person.01306267021.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306267021.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernu", 
        "givenName": "Julien", 
        "id": "sg:person.014122247767.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014122247767.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brune", 
        "givenName": "Michel", 
        "id": "sg:person.0630776121.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776121.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raimond", 
        "givenName": "Jean-Michel", 
        "id": "sg:person.0724205414.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724205414.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Coll\u00e8ge de France", 
          "id": "https://www.grid.ac/institutes/grid.410533.0", 
          "name": [
            "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, CNRS, Universit\u00e9 Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France", 
            "Coll\u00e8ge de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haroche", 
        "givenName": "Serge", 
        "id": "sg:person.0772320614.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772320614.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjd/e2004-00171-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001427234", 
          "https://doi.org/10.1140/epjd/e2004-00171-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006328423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006328423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.052101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006516467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2724816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007327487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.053821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008414053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.053821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008414053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011334577", 
          "https://doi.org/10.1038/nature06054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.213601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017708883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.213601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017708883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340008232199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022547229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033855144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033855144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038065039", 
          "https://doi.org/10.1038/nature06057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6638(08)70324-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038607063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040245623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040245623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040652134", 
          "https://doi.org/10.1038/35002001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040652134", 
          "https://doi.org/10.1038/35002001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386150a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042016496", 
          "https://doi.org/10.1038/386150a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051606135", 
          "https://doi.org/10.1038/nature04279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.131.2766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.131.2766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060427420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.4239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.1295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.1295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.200402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.200402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198509141.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098793790"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies through measurements on different realizations. Reconstructing the state of a set of trapped particles shielded from their environment is an important step in the investigation of the quantum-classical boundary. Although trapped-atom state reconstructions have been achieved, it is challenging to perform similar experiments with trapped photons because cavities that can store light for very long times are required. Here we report the complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured. Atoms crossing the cavity one by one are used to extract information about the field. We obtain images of coherent states, Fock states with a definite photon number and 'Schr\u00f6dinger cat' states (superpositions of coherent states with different phases). These states are equivalently represented by their density matrices or Wigner functions. Quasi-classical coherent states have a Gaussian-shaped Wigner function, whereas the Wigner functions of Fock and Schr\u00f6dinger cat states show oscillations and negativities revealing quantum interferences. Cavity damping induces decoherence that quickly washes out such oscillations. We observe this process and follow the evolution of decoherence by reconstructing snapshots of Schr\u00f6dinger cat states at successive times. Our reconstruction procedure is a useful tool for further decoherence and quantum feedback studies of fields trapped in one or two cavities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07288", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7212", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "455"
      }
    ], 
    "name": "Reconstruction of non-classical cavity field states with snapshots of their decoherence", 
    "pagination": "510", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57cfc9a68d1867cb8a1430ff4df1ed5f93a93de4dcb4e23524f56396d3ef3598"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18818653"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07288"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018429633"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07288", 
      "https://app.dimensions.ai/details/publication/pub.1018429633"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07288"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07288'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07288'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07288'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07288'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07288 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N439ed9519ebb43deba51d032383dde9a
4 schema:citation sg:pub.10.1038/35002001
5 sg:pub.10.1038/386150a0
6 sg:pub.10.1038/nature04279
7 sg:pub.10.1038/nature06054
8 sg:pub.10.1038/nature06057
9 sg:pub.10.1140/epjd/e2004-00171-6
10 https://doi.org/10.1016/s0079-6638(08)70324-x
11 https://doi.org/10.1063/1.2724816
12 https://doi.org/10.1080/09500340008232199
13 https://doi.org/10.1093/acprof:oso/9780198509141.001.0001
14 https://doi.org/10.1103/physrev.131.2766
15 https://doi.org/10.1103/physreva.46.4239
16 https://doi.org/10.1103/physreva.53.1295
17 https://doi.org/10.1103/physreva.67.052101
18 https://doi.org/10.1103/physreva.70.053821
19 https://doi.org/10.1103/physrevlett.70.1244
20 https://doi.org/10.1103/physrevlett.74.884
21 https://doi.org/10.1103/physrevlett.77.4281
22 https://doi.org/10.1103/physrevlett.77.4887
23 https://doi.org/10.1103/physrevlett.78.2547
24 https://doi.org/10.1103/physrevlett.83.4037
25 https://doi.org/10.1103/physrevlett.87.050402
26 https://doi.org/10.1103/physrevlett.89.200402
27 https://doi.org/10.1103/physrevlett.96.213601
28 https://doi.org/10.1103/revmodphys.73.565
29 https://doi.org/10.1103/revmodphys.75.715
30 schema:datePublished 2008-09
31 schema:datePublishedReg 2008-09-01
32 schema:description The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies through measurements on different realizations. Reconstructing the state of a set of trapped particles shielded from their environment is an important step in the investigation of the quantum-classical boundary. Although trapped-atom state reconstructions have been achieved, it is challenging to perform similar experiments with trapped photons because cavities that can store light for very long times are required. Here we report the complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured. Atoms crossing the cavity one by one are used to extract information about the field. We obtain images of coherent states, Fock states with a definite photon number and 'Schrödinger cat' states (superpositions of coherent states with different phases). These states are equivalently represented by their density matrices or Wigner functions. Quasi-classical coherent states have a Gaussian-shaped Wigner function, whereas the Wigner functions of Fock and Schrödinger cat states show oscillations and negativities revealing quantum interferences. Cavity damping induces decoherence that quickly washes out such oscillations. We observe this process and follow the evolution of decoherence by reconstructing snapshots of Schrödinger cat states at successive times. Our reconstruction procedure is a useful tool for further decoherence and quantum feedback studies of fields trapped in one or two cavities.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N0b6c4de94032433a9fdd93be18e3560f
37 Nadabd2eeba034adc828a9790c3f217a2
38 sg:journal.1018957
39 schema:name Reconstruction of non-classical cavity field states with snapshots of their decoherence
40 schema:pagination 510
41 schema:productId N12640bddd2f248c9b89c5df673644dd0
42 N418b42ea14214d519640d6c3586eefa6
43 N9c6533950c4646df96b9caaa2e888a25
44 Ne024b46dae3340a1bed2250881b75e15
45 Ne8130a5ff25e4ad29760a4e84fa8d36d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018429633
47 https://doi.org/10.1038/nature07288
48 schema:sdDatePublished 2019-04-10T20:08
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N85e62a8b086a4d9e965362d40a3250f2
51 schema:url https://www.nature.com/articles/nature07288
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0b6c4de94032433a9fdd93be18e3560f schema:issueNumber 7212
56 rdf:type schema:PublicationIssue
57 N12640bddd2f248c9b89c5df673644dd0 schema:name doi
58 schema:value 10.1038/nature07288
59 rdf:type schema:PropertyValue
60 N418b42ea14214d519640d6c3586eefa6 schema:name nlm_unique_id
61 schema:value 0410462
62 rdf:type schema:PropertyValue
63 N439ed9519ebb43deba51d032383dde9a rdf:first sg:person.01076622774.19
64 rdf:rest N9fc056161f9a4aeb82b80f5ba86601c3
65 N56f370d8d7094d579b2b01d8a0d6d229 rdf:first sg:person.0724205414.06
66 rdf:rest N6c0093e6fc124a52af86bc9c7dd51120
67 N6c0093e6fc124a52af86bc9c7dd51120 rdf:first sg:person.0772320614.68
68 rdf:rest rdf:nil
69 N85e62a8b086a4d9e965362d40a3250f2 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N9c6533950c4646df96b9caaa2e888a25 schema:name pubmed_id
72 schema:value 18818653
73 rdf:type schema:PropertyValue
74 N9fc056161f9a4aeb82b80f5ba86601c3 rdf:first sg:person.01240153621.20
75 rdf:rest Nd7b92b17299146d1ae99c02b47dd0102
76 Nadabd2eeba034adc828a9790c3f217a2 schema:volumeNumber 455
77 rdf:type schema:PublicationVolume
78 Nbea20a19ca6540aca7d918bddb735064 rdf:first sg:person.0630776121.06
79 rdf:rest N56f370d8d7094d579b2b01d8a0d6d229
80 Nd7b92b17299146d1ae99c02b47dd0102 rdf:first sg:person.01306267021.38
81 rdf:rest Ndd8b3c61b97447b795903fd7a6941c75
82 Ndd8b3c61b97447b795903fd7a6941c75 rdf:first sg:person.014122247767.74
83 rdf:rest Nbea20a19ca6540aca7d918bddb735064
84 Ne024b46dae3340a1bed2250881b75e15 schema:name dimensions_id
85 schema:value pub.1018429633
86 rdf:type schema:PropertyValue
87 Ne8130a5ff25e4ad29760a4e84fa8d36d schema:name readcube_id
88 schema:value 57cfc9a68d1867cb8a1430ff4df1ed5f93a93de4dcb4e23524f56396d3ef3598
89 rdf:type schema:PropertyValue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
94 schema:name Quantum Physics
95 rdf:type schema:DefinedTerm
96 sg:journal.1018957 schema:issn 0090-0028
97 1476-4687
98 schema:name Nature
99 rdf:type schema:Periodical
100 sg:person.01076622774.19 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
101 schema:familyName Deléglise
102 schema:givenName Samuel
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076622774.19
104 rdf:type schema:Person
105 sg:person.01240153621.20 schema:affiliation https://www.grid.ac/institutes/grid.410533.0
106 schema:familyName Dotsenko
107 schema:givenName Igor
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240153621.20
109 rdf:type schema:Person
110 sg:person.01306267021.38 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
111 schema:familyName Sayrin
112 schema:givenName Clément
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306267021.38
114 rdf:type schema:Person
115 sg:person.014122247767.74 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
116 schema:familyName Bernu
117 schema:givenName Julien
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014122247767.74
119 rdf:type schema:Person
120 sg:person.0630776121.06 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
121 schema:familyName Brune
122 schema:givenName Michel
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630776121.06
124 rdf:type schema:Person
125 sg:person.0724205414.06 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
126 schema:familyName Raimond
127 schema:givenName Jean-Michel
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724205414.06
129 rdf:type schema:Person
130 sg:person.0772320614.68 schema:affiliation https://www.grid.ac/institutes/grid.410533.0
131 schema:familyName Haroche
132 schema:givenName Serge
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772320614.68
134 rdf:type schema:Person
135 sg:pub.10.1038/35002001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040652134
136 https://doi.org/10.1038/35002001
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/386150a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042016496
139 https://doi.org/10.1038/386150a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature04279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051606135
142 https://doi.org/10.1038/nature04279
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature06054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011334577
145 https://doi.org/10.1038/nature06054
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature06057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038065039
148 https://doi.org/10.1038/nature06057
149 rdf:type schema:CreativeWork
150 sg:pub.10.1140/epjd/e2004-00171-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001427234
151 https://doi.org/10.1140/epjd/e2004-00171-6
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0079-6638(08)70324-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038607063
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.2724816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007327487
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/09500340008232199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022547229
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/acprof:oso/9780198509141.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098793790
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrev.131.2766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060427420
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physreva.46.4239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486231
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreva.53.1295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491166
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreva.67.052101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516467
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreva.70.053821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008414053
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.70.1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806377
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.74.884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811439
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.77.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814288
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.77.4887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245623
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.78.2547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814987
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.83.4037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820330
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.87.050402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033855144
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.89.200402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825568
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.96.213601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017708883
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/revmodphys.73.565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839539
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/revmodphys.75.715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006328423
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.410533.0 schema:alternateName Collège de France
194 schema:name Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
195 Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
198 schema:name Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...