Amplitude spectroscopy of a solid-state artificial atom View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09

AUTHORS

David M. Berns, Mark S. Rudner, Sergio O. Valenzuela, Karl K. Berggren, William D. Oliver, Leonid S. Levitov, Terry P. Orlando

ABSTRACT

The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed. More... »

PAGES

51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07262

DOI

http://dx.doi.org/10.1038/nature07262

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053725342

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18769433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Physics,", 
            "Research Laboratory for Electronics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berns", 
        "givenName": "David M.", 
        "id": "sg:person.01014106071.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014106071.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rudner", 
        "givenName": "Mark S.", 
        "id": "sg:person.0766412371.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766412371.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valenzuela", 
        "givenName": "Sergio O.", 
        "id": "sg:person.0746667122.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746667122.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berggren", 
        "givenName": "Karl K.", 
        "id": "sg:person.01216454261.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216454261.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Research Laboratory for Electronics,", 
            "Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "William D.", 
        "id": "sg:person.01244563071.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244563071.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitov", 
        "givenName": "Leonid S.", 
        "id": "sg:person.0605102273.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Research Laboratory for Electronics,", 
            "Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlando", 
        "givenName": "Terry P.", 
        "id": "sg:person.0731523521.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731523521.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004738018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.060506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004738018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.187002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006403574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.187002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006403574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010746759", 
          "https://doi.org/10.1038/nature06184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.174523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010922653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.174523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010922653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10200-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010950244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011752142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.76.042514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011752142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012155233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.187003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012155233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012838708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.150502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012838708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.063414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014943403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.063414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014943403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018162060", 
          "https://doi.org/10.1038/nature06141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.15398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.15398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.107001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020324855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.107001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020324855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022101694", 
          "https://doi.org/10.1038/nphys509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.037003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025059997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.037003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025059997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/48/4/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931446", 
          "https://doi.org/10.1038/nphys838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.117901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032128686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.117901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032128686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032637044", 
          "https://doi.org/10.1038/nature02831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032637044", 
          "https://doi.org/10.1038/nature02831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032925420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034988758", 
          "https://doi.org/10.1038/nature06124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/383145a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036610413", 
          "https://doi.org/10.1038/383145a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.207002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.207002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041493526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.257003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042800241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.257003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042800241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.200404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044115035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.200404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044115035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.127006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045264095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.127006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045264095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.113201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047614264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.113201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047614264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.047001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.047001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.3830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.246601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.54.697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.54.697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1081045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1084528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1119678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1126475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1134008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.239.4843.992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062535382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5411.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5492.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062571877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/4783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098912954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07262", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7209", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "455"
      }
    ], 
    "name": "Amplitude spectroscopy of a solid-state artificial atom", 
    "pagination": "51", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ffe6b4c33266159ff81cdaa8ecd334240fe8732d518d77cdd08cf2b5b2b34790"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18769433"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07262"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053725342"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07262", 
      "https://app.dimensions.ai/details/publication/pub.1053725342"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07262"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07262'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07262'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07262'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07262'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07262 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N77b0d8a71d724af88c4443665ac17225
4 schema:citation sg:pub.10.1038/19718
5 sg:pub.10.1038/35017505
6 sg:pub.10.1038/383145a0
7 sg:pub.10.1038/nature02831
8 sg:pub.10.1038/nature02851
9 sg:pub.10.1038/nature06124
10 sg:pub.10.1038/nature06141
11 sg:pub.10.1038/nature06184
12 sg:pub.10.1038/nphys509
13 sg:pub.10.1038/nphys838
14 https://doi.org/10.1088/0034-4885/48/4/003
15 https://doi.org/10.1103/physreva.75.063414
16 https://doi.org/10.1103/physreva.76.042514
17 https://doi.org/10.1103/physrevb.60.15398
18 https://doi.org/10.1103/physrevb.72.060506
19 https://doi.org/10.1103/physrevb.76.174523
20 https://doi.org/10.1103/physrevlett.100.047001
21 https://doi.org/10.1103/physrevlett.76.3830
22 https://doi.org/10.1103/physrevlett.87.246601
23 https://doi.org/10.1103/physrevlett.89.117901
24 https://doi.org/10.1103/physrevlett.93.037003
25 https://doi.org/10.1103/physrevlett.93.187003
26 https://doi.org/10.1103/physrevlett.93.207002
27 https://doi.org/10.1103/physrevlett.96.107001
28 https://doi.org/10.1103/physrevlett.96.127006
29 https://doi.org/10.1103/physrevlett.96.187002
30 https://doi.org/10.1103/physrevlett.97.150502
31 https://doi.org/10.1103/physrevlett.97.200404
32 https://doi.org/10.1103/physrevlett.98.257003
33 https://doi.org/10.1103/physrevlett.99.113201
34 https://doi.org/10.1103/revmodphys.54.697
35 https://doi.org/10.1103/revmodphys.75.1
36 https://doi.org/10.1103/revmodphys.79.1217
37 https://doi.org/10.1126/science.1069372
38 https://doi.org/10.1126/science.1069452
39 https://doi.org/10.1126/science.1081045
40 https://doi.org/10.1126/science.1084528
41 https://doi.org/10.1126/science.1119678
42 https://doi.org/10.1126/science.1126475
43 https://doi.org/10.1126/science.1134008
44 https://doi.org/10.1126/science.239.4843.992
45 https://doi.org/10.1126/science.284.5411.133
46 https://doi.org/10.1126/science.285.5430.1036
47 https://doi.org/10.1126/science.290.5492.773
48 https://doi.org/10.1142/4783
49 https://doi.org/10.1209/epl/i2003-10200-6
50 schema:datePublished 2008-09
51 schema:datePublishedReg 2008-09-01
52 schema:description The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N0fdbdd0c76f34d27b80e7921319fbfe2
57 N130cac32f4b344599f00e7ac935139c3
58 sg:journal.1018957
59 schema:name Amplitude spectroscopy of a solid-state artificial atom
60 schema:pagination 51
61 schema:productId N39f5ae3a1ec54fa485bf5a6ca2345ce5
62 N7ca8d92da47c4bb187f27de39eb363b3
63 N98eb2fecd57f4d3a805d574d262a5bb9
64 Nafafefff89334c938dd3ae600eeb7893
65 Nff4b080c7c344e49a7ce33714f42a90f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053725342
67 https://doi.org/10.1038/nature07262
68 schema:sdDatePublished 2019-04-11T02:29
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N669e5f0440fe4595861d091486af3b9c
71 schema:url https://www.nature.com/articles/nature07262
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0b54e5b7e5144689b7d86160a8b8d2c8 rdf:first sg:person.01216454261.37
76 rdf:rest Nbf57ed25949147a4a054122d3c8eba00
77 N0c5b7068e2cc4f30a71bc262cd2b76f5 rdf:first sg:person.0746667122.53
78 rdf:rest N0b54e5b7e5144689b7d86160a8b8d2c8
79 N0e41a9a41ab9496c89b83bc906575459 schema:name Department of Physics,
80 rdf:type schema:Organization
81 N0fdbdd0c76f34d27b80e7921319fbfe2 schema:issueNumber 7209
82 rdf:type schema:PublicationIssue
83 N130cac32f4b344599f00e7ac935139c3 schema:volumeNumber 455
84 rdf:type schema:PublicationVolume
85 N39f5ae3a1ec54fa485bf5a6ca2345ce5 schema:name dimensions_id
86 schema:value pub.1053725342
87 rdf:type schema:PropertyValue
88 N486806a6f3524b29b2adfe9575d7e2fc schema:name Department of Physics,
89 rdf:type schema:Organization
90 N520610fafad74e3cbb4de4ce2172086f rdf:first sg:person.0766412371.27
91 rdf:rest N0c5b7068e2cc4f30a71bc262cd2b76f5
92 N669e5f0440fe4595861d091486af3b9c schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N77b0d8a71d724af88c4443665ac17225 rdf:first sg:person.01014106071.93
95 rdf:rest N520610fafad74e3cbb4de4ce2172086f
96 N7ca8d92da47c4bb187f27de39eb363b3 schema:name readcube_id
97 schema:value ffe6b4c33266159ff81cdaa8ecd334240fe8732d518d77cdd08cf2b5b2b34790
98 rdf:type schema:PropertyValue
99 N98eb2fecd57f4d3a805d574d262a5bb9 schema:name nlm_unique_id
100 schema:value 0410462
101 rdf:type schema:PropertyValue
102 Nafafefff89334c938dd3ae600eeb7893 schema:name doi
103 schema:value 10.1038/nature07262
104 rdf:type schema:PropertyValue
105 Nbf57ed25949147a4a054122d3c8eba00 rdf:first sg:person.01244563071.49
106 rdf:rest Ncffff309a232458d9b81a14b3f944abf
107 Ncbca4ea78112488696bdc654388e54e9 rdf:first sg:person.0731523521.71
108 rdf:rest rdf:nil
109 Ncffff309a232458d9b81a14b3f944abf rdf:first sg:person.0605102273.86
110 rdf:rest Ncbca4ea78112488696bdc654388e54e9
111 Ne14851edbf3742a289af5d8482ac1595 schema:name Department of Physics,
112 Research Laboratory for Electronics,
113 rdf:type schema:Organization
114 Nff4b080c7c344e49a7ce33714f42a90f schema:name pubmed_id
115 schema:value 18769433
116 rdf:type schema:PropertyValue
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:journal.1018957 schema:issn 0090-0028
124 1476-4687
125 schema:name Nature
126 rdf:type schema:Periodical
127 sg:person.01014106071.93 schema:affiliation Ne14851edbf3742a289af5d8482ac1595
128 schema:familyName Berns
129 schema:givenName David M.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014106071.93
131 rdf:type schema:Person
132 sg:person.01216454261.37 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
133 schema:familyName Berggren
134 schema:givenName Karl K.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216454261.37
136 rdf:type schema:Person
137 sg:person.01244563071.49 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
138 schema:familyName Oliver
139 schema:givenName William D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244563071.49
141 rdf:type schema:Person
142 sg:person.0605102273.86 schema:affiliation N486806a6f3524b29b2adfe9575d7e2fc
143 schema:familyName Levitov
144 schema:givenName Leonid S.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86
146 rdf:type schema:Person
147 sg:person.0731523521.71 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
148 schema:familyName Orlando
149 schema:givenName Terry P.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731523521.71
151 rdf:type schema:Person
152 sg:person.0746667122.53 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
153 schema:familyName Valenzuela
154 schema:givenName Sergio O.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746667122.53
156 rdf:type schema:Person
157 sg:person.0766412371.27 schema:affiliation N0e41a9a41ab9496c89b83bc906575459
158 schema:familyName Rudner
159 schema:givenName Mark S.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766412371.27
161 rdf:type schema:Person
162 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
163 https://doi.org/10.1038/19718
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/35017505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005853731
166 https://doi.org/10.1038/35017505
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/383145a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036610413
169 https://doi.org/10.1038/383145a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature02831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032637044
172 https://doi.org/10.1038/nature02831
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature02851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002136634
175 https://doi.org/10.1038/nature02851
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature06124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034988758
178 https://doi.org/10.1038/nature06124
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature06141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018162060
181 https://doi.org/10.1038/nature06141
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature06184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010746759
184 https://doi.org/10.1038/nature06184
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphys509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022101694
187 https://doi.org/10.1038/nphys509
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nphys838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931446
190 https://doi.org/10.1038/nphys838
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1088/0034-4885/48/4/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026562325
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreva.75.063414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014943403
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreva.76.042514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011752142
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.60.15398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018700002
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.72.060506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004738018
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.76.174523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010922653
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.100.047001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752817
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevlett.76.3830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813180
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.87.246601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824114
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevlett.89.117901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032128686
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.93.037003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025059997
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.93.187003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012155233
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.93.207002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041493526
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.96.107001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020324855
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.96.127006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045264095
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.96.187002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006403574
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.97.150502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012838708
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.97.200404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044115035
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.98.257003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042800241
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.99.113201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047614264
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/revmodphys.54.697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839014
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/revmodphys.75.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925420
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/revmodphys.79.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826730
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1126/science.1069372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445901
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1126/science.1069452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445912
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1126/science.1081045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447811
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1084528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448113
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1119678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452723
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1126475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453707
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.1134008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454846
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.239.4843.992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062535382
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1126/science.284.5411.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564714
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.285.5430.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187346
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1126/science.290.5492.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062571877
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1142/4783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098912954
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1209/epl/i2003-10200-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010950244
263 rdf:type schema:CreativeWork
264 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
265 schema:name Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
266 Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
267 Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, Massachusetts 02420, USA
268 Research Laboratory for Electronics,
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...