Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08

AUTHORS

Mark Turner, Vladimir B Golovko, Owain P H Vaughan, Pavel Abdulkin, Angel Berenguer-Murcia, Mintcho S Tikhov, Brian F G Johnson, Richard M Lambert

ABSTRACT

Supported gold nanoparticles have excited much interest owing to their unusual and somewhat unexpected catalytic properties, but the origin of the catalytic activity is still not fully understood. Experimental work on gold particles supported on a titanium dioxide (110) single-crystal surface has established a striking size threshold effect associated with a metal-to-insulator transition, with gold particles catalytically active only if their diameters fall below approximately 3.5 nm. However, the remarkable catalytic behaviour might also in part arise from strong electronic interaction between the gold and the titanium dioxide support. In the case of industrially important selective oxidation reactions, explanation of the effectiveness of gold nanoparticle catalysts is complicated by the need for additives to drive the reaction, and/or the presence of strong support interactions and incomplete understanding of their possible catalytic role. Here we show that very small gold entities ( approximately 1.4 nm) derived from 55-atom gold clusters and supported on inert materials are efficient and robust catalysts for the selective oxidation of styrene by dioxygen. We find a sharp size threshold in catalytic activity, in that particles with diameters of approximately 2 nm and above are completely inactive. Our observations suggest that catalytic activity arises from the altered electronic structure intrinsic to small gold nanoparticles, and that the use of 55-atom gold clusters may prove a viable route to the synthesis of robust gold catalysts suited to practical application. More... »

PAGES

981-983

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07194

DOI

http://dx.doi.org/10.1038/nature07194

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049533335

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18719586


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner", 
        "givenName": "Mark", 
        "id": "sg:person.01005156664.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005156664.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Golovko", 
        "givenName": "Vladimir B", 
        "id": "sg:person.01060727405.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060727405.10"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Vaughan", 
        "givenName": "Owain P H", 
        "id": "sg:person.015165741604.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165741604.78"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Abdulkin", 
        "givenName": "Pavel", 
        "id": "sg:person.01175156005.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175156005.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Berenguer-Murcia", 
        "givenName": "Angel", 
        "id": "sg:person.014333117160.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333117160.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Tikhov", 
        "givenName": "Mintcho S", 
        "id": "sg:person.013015673601.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015673601.09"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Johnson", 
        "givenName": "Brian F G", 
        "id": "sg:person.016624546711.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624546711.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lambert", 
        "givenName": "Richard M", 
        "id": "sg:person.014350104107.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350104107.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/4371098a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000723677", 
          "https://doi.org/10.1038/4371098a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4371098a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000723677", 
          "https://doi.org/10.1038/4371098a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcata.2004.09.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001096245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2005.02.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002397152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.1987.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003157979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2005.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004061826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005112490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5383.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006037856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(86)90616-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010464350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(86)90616-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010464350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03215514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014238381", 
          "https://doi.org/10.1007/bf03215514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b418273a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018106940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.1993.1277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022592347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.1998.2157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027961096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2007.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029289603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.1993.1322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030655116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(96)00208-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031773825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032010487", 
          "https://doi.org/10.1038/nature04190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032010487", 
          "https://doi.org/10.1038/nature04190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032010487", 
          "https://doi.org/10.1038/nature04190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b314864e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033303577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2006.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035598325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/2/202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043789887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020181423055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046461927", 
          "https://doi.org/10.1023/a:1020181423055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2006.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052423085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja039378y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055835031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja039378y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055835031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0557031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055840213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0557031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055840213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp992177p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056131330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp992177p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056131330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2359688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057852347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1076248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446943"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "Supported gold nanoparticles have excited much interest owing to their unusual and somewhat unexpected catalytic properties, but the origin of the catalytic activity is still not fully understood. Experimental work on gold particles supported on a titanium dioxide (110) single-crystal surface has established a striking size threshold effect associated with a metal-to-insulator transition, with gold particles catalytically active only if their diameters fall below approximately 3.5 nm. However, the remarkable catalytic behaviour might also in part arise from strong electronic interaction between the gold and the titanium dioxide support. In the case of industrially important selective oxidation reactions, explanation of the effectiveness of gold nanoparticle catalysts is complicated by the need for additives to drive the reaction, and/or the presence of strong support interactions and incomplete understanding of their possible catalytic role. Here we show that very small gold entities ( approximately 1.4 nm) derived from 55-atom gold clusters and supported on inert materials are efficient and robust catalysts for the selective oxidation of styrene by dioxygen. We find a sharp size threshold in catalytic activity, in that particles with diameters of approximately 2 nm and above are completely inactive. Our observations suggest that catalytic activity arises from the altered electronic structure intrinsic to small gold nanoparticles, and that the use of 55-atom gold clusters may prove a viable route to the synthesis of robust gold catalysts suited to practical application.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07194", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7207", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "454"
      }
    ], 
    "name": "Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters", 
    "pagination": "981-983", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebf6e2b02c9fc344e35ee23673e6e254c845b2d968f26c0735eaaf49732e020e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18719586"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07194"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049533335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07194", 
      "https://app.dimensions.ai/details/publication/pub.1049533335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nature/journal/v454/n7207/full/nature07194.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07194'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07194'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07194'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07194'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07194 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N18e5f2d83f354564af9a590cf7a37cfe
4 schema:citation sg:pub.10.1007/bf03215514
5 sg:pub.10.1023/a:1020181423055
6 sg:pub.10.1038/4371098a
7 sg:pub.10.1038/nature04190
8 https://doi.org/10.1006/jcat.1993.1322
9 https://doi.org/10.1006/jcat.1998.2157
10 https://doi.org/10.1006/jcis.1993.1277
11 https://doi.org/10.1016/0039-6028(86)90616-3
12 https://doi.org/10.1016/j.apsusc.2005.02.064
13 https://doi.org/10.1016/j.cattod.2007.01.021
14 https://doi.org/10.1016/j.jcat.2005.10.019
15 https://doi.org/10.1016/j.jcat.2006.04.004
16 https://doi.org/10.1016/j.jcat.2006.09.005
17 https://doi.org/10.1016/j.molcata.2004.09.077
18 https://doi.org/10.1016/j.susc.2006.08.025
19 https://doi.org/10.1016/s0920-5861(96)00208-8
20 https://doi.org/10.1021/ja039378y
21 https://doi.org/10.1021/ja0557031
22 https://doi.org/10.1021/jp992177p
23 https://doi.org/10.1039/b314864e
24 https://doi.org/10.1039/b418273a
25 https://doi.org/10.1063/1.2359688
26 https://doi.org/10.1088/0953-8984/15/2/202
27 https://doi.org/10.1103/physrevb.37.844
28 https://doi.org/10.1126/science.1076248
29 https://doi.org/10.1126/science.281.5383.1647
30 https://doi.org/10.1246/cl.1987.405
31 schema:datePublished 2008-08
32 schema:datePublishedReg 2008-08-01
33 schema:description Supported gold nanoparticles have excited much interest owing to their unusual and somewhat unexpected catalytic properties, but the origin of the catalytic activity is still not fully understood. Experimental work on gold particles supported on a titanium dioxide (110) single-crystal surface has established a striking size threshold effect associated with a metal-to-insulator transition, with gold particles catalytically active only if their diameters fall below approximately 3.5 nm. However, the remarkable catalytic behaviour might also in part arise from strong electronic interaction between the gold and the titanium dioxide support. In the case of industrially important selective oxidation reactions, explanation of the effectiveness of gold nanoparticle catalysts is complicated by the need for additives to drive the reaction, and/or the presence of strong support interactions and incomplete understanding of their possible catalytic role. Here we show that very small gold entities ( approximately 1.4 nm) derived from 55-atom gold clusters and supported on inert materials are efficient and robust catalysts for the selective oxidation of styrene by dioxygen. We find a sharp size threshold in catalytic activity, in that particles with diameters of approximately 2 nm and above are completely inactive. Our observations suggest that catalytic activity arises from the altered electronic structure intrinsic to small gold nanoparticles, and that the use of 55-atom gold clusters may prove a viable route to the synthesis of robust gold catalysts suited to practical application.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0a71fd883dd340fe9e2b11f915f4cfc0
38 Nc17af03dda494addb8f40e70ce090171
39 sg:journal.1018957
40 schema:name Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters
41 schema:pagination 981-983
42 schema:productId N241d75d0993d4340a9e5e27df667c14e
43 N71770a4a8d7f4d6c8939d903c1948d96
44 N8ca720ba14f94adf90eaa55a87b40ee2
45 Na40171441a134cc0b120562211e6421a
46 Neea214367b9f47309bae7fba524e3150
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049533335
48 https://doi.org/10.1038/nature07194
49 schema:sdDatePublished 2019-04-11T01:47
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nc798a78e05aa4791a71f30c1ed80b80d
52 schema:url http://www.nature.com/nature/journal/v454/n7207/full/nature07194.html
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0a71fd883dd340fe9e2b11f915f4cfc0 schema:issueNumber 7207
57 rdf:type schema:PublicationIssue
58 N166fc3172c6847a998f79326149037fd rdf:first sg:person.01175156005.21
59 rdf:rest Nce3f709038ae45bab49163d6383599a4
60 N18e5f2d83f354564af9a590cf7a37cfe rdf:first sg:person.01005156664.31
61 rdf:rest N800f495586554d7bbd6eeb6f2b270e44
62 N241d75d0993d4340a9e5e27df667c14e schema:name readcube_id
63 schema:value ebf6e2b02c9fc344e35ee23673e6e254c845b2d968f26c0735eaaf49732e020e
64 rdf:type schema:PropertyValue
65 N6159003460af4ba2a921f582941fea56 rdf:first sg:person.015165741604.78
66 rdf:rest N166fc3172c6847a998f79326149037fd
67 N71770a4a8d7f4d6c8939d903c1948d96 schema:name pubmed_id
68 schema:value 18719586
69 rdf:type schema:PropertyValue
70 N800f495586554d7bbd6eeb6f2b270e44 rdf:first sg:person.01060727405.10
71 rdf:rest N6159003460af4ba2a921f582941fea56
72 N8ca720ba14f94adf90eaa55a87b40ee2 schema:name nlm_unique_id
73 schema:value 0410462
74 rdf:type schema:PropertyValue
75 Na40171441a134cc0b120562211e6421a schema:name doi
76 schema:value 10.1038/nature07194
77 rdf:type schema:PropertyValue
78 Naeef52aa29f1402b99139f57f6e627c4 rdf:first sg:person.013015673601.09
79 rdf:rest Nc89e2c4ea3124afe89f94a88386fa91f
80 Nc17af03dda494addb8f40e70ce090171 schema:volumeNumber 454
81 rdf:type schema:PublicationVolume
82 Nc798a78e05aa4791a71f30c1ed80b80d schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nc89e2c4ea3124afe89f94a88386fa91f rdf:first sg:person.016624546711.03
85 rdf:rest Ncd06acd4c3b24a3b843f4682f715383a
86 Ncd06acd4c3b24a3b843f4682f715383a rdf:first sg:person.014350104107.43
87 rdf:rest rdf:nil
88 Nce3f709038ae45bab49163d6383599a4 rdf:first sg:person.014333117160.43
89 rdf:rest Naeef52aa29f1402b99139f57f6e627c4
90 Neea214367b9f47309bae7fba524e3150 schema:name dimensions_id
91 schema:value pub.1049533335
92 rdf:type schema:PropertyValue
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Chemistry (incl. Structural)
98 rdf:type schema:DefinedTerm
99 sg:journal.1018957 schema:issn 0090-0028
100 1476-4687
101 schema:name Nature
102 rdf:type schema:Periodical
103 sg:person.01005156664.31 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
104 schema:familyName Turner
105 schema:givenName Mark
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005156664.31
107 rdf:type schema:Person
108 sg:person.01060727405.10 schema:familyName Golovko
109 schema:givenName Vladimir B
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060727405.10
111 rdf:type schema:Person
112 sg:person.01175156005.21 schema:familyName Abdulkin
113 schema:givenName Pavel
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175156005.21
115 rdf:type schema:Person
116 sg:person.013015673601.09 schema:familyName Tikhov
117 schema:givenName Mintcho S
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015673601.09
119 rdf:type schema:Person
120 sg:person.014333117160.43 schema:familyName Berenguer-Murcia
121 schema:givenName Angel
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014333117160.43
123 rdf:type schema:Person
124 sg:person.014350104107.43 schema:familyName Lambert
125 schema:givenName Richard M
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350104107.43
127 rdf:type schema:Person
128 sg:person.015165741604.78 schema:familyName Vaughan
129 schema:givenName Owain P H
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015165741604.78
131 rdf:type schema:Person
132 sg:person.016624546711.03 schema:familyName Johnson
133 schema:givenName Brian F G
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624546711.03
135 rdf:type schema:Person
136 sg:pub.10.1007/bf03215514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014238381
137 https://doi.org/10.1007/bf03215514
138 rdf:type schema:CreativeWork
139 sg:pub.10.1023/a:1020181423055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046461927
140 https://doi.org/10.1023/a:1020181423055
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/4371098a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000723677
143 https://doi.org/10.1038/4371098a
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature04190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032010487
146 https://doi.org/10.1038/nature04190
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jcat.1993.1322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030655116
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1006/jcat.1998.2157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027961096
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1006/jcis.1993.1277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022592347
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0039-6028(86)90616-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010464350
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.apsusc.2005.02.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002397152
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cattod.2007.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029289603
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jcat.2005.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004061826
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jcat.2006.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052423085
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jcat.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005112490
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.molcata.2004.09.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001096245
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.susc.2006.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035598325
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0920-5861(96)00208-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031773825
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ja039378y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055835031
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ja0557031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055840213
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/jp992177p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056131330
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/b314864e schema:sameAs https://app.dimensions.ai/details/publication/pub.1033303577
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/b418273a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018106940
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.2359688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057852347
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0953-8984/15/2/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043789887
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.37.844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546208
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1076248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446943
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.281.5383.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006037856
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1246/cl.1987.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003157979
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
195 schema:name Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...