Imaging and dynamics of light atoms and molecules on graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07-01

AUTHORS

Jannik C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl

ABSTRACT

Imaging atoms: 'Invisible' graphene brings electron microscopy to single carbons and hydrogensScanning tunnelling microscopes made it possible to image atomic-scale features on a solid-state surface. But they have limitations in terms of sample conductivity, cleanliness and data acquisition rate. An older technology, the transmission electron microscope (TEM), meanwhile evolved to be able to image individual heavy atoms. But lighter atoms remained beyond its range because of their low contrast. Enter graphene, the one-atom-thick sheet of carbon atoms packed in a dense two-dimensional honeycomb lattice. Meyer et al. show that atoms as small as carbon and even hydrogen adsorbed onto graphene can be imaged using standard TEM technology. Ultrathin graphene is an ideal support, either invisible or, if the lattice is resolved at high resolution, its contribution to the imaging signal is easily removed. This approach brings atomic resolution to biomolecules as well as to graphene itself. The cover shows hydrogen atoms (purple) on a graphene sheet (red), with a carbon atom (yellow tipped) near left centre. Yellow peaks are amorphous carbon. More... »

PAGES

319-322

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07094

DOI

http://dx.doi.org/10.1038/nature07094

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032754432

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18633414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Jannik C.", 
        "id": "sg:person.01107342035.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107342035.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girit", 
        "givenName": "C. O.", 
        "id": "sg:person.0604133562.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604133562.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crommie", 
        "givenName": "M. F.", 
        "id": "sg:person.01046572263.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA", 
            "Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zettl", 
        "givenName": "A.", 
        "id": "sg:person.0766475362.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/416826a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039123726", 
          "https://doi.org/10.1038/416826a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014928846", 
          "https://doi.org/10.1038/nature02817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005318250", 
          "https://doi.org/10.1038/nnano.2007.187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032351800", 
          "https://doi.org/10.1038/24521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004701300", 
          "https://doi.org/10.1038/nnano.2007.141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030811740", 
          "https://doi.org/10.1038/nature05545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-01", 
    "datePublishedReg": "2008-07-01", 
    "description": "Imaging atoms: 'Invisible' graphene brings electron microscopy to single carbons and hydrogensScanning tunnelling microscopes made it possible to image atomic-scale features on a solid-state surface. But they have limitations in terms of sample conductivity, cleanliness and data acquisition rate. An older technology, the transmission electron microscope (TEM), meanwhile evolved to be able to image individual heavy atoms. But lighter atoms remained beyond its range because of their low contrast. Enter graphene, the one-atom-thick sheet of carbon atoms packed in a dense two-dimensional honeycomb lattice. Meyer et al. show that atoms as small as carbon and even hydrogen adsorbed onto graphene can be imaged using standard TEM technology. Ultrathin graphene is an ideal support, either invisible or, if the lattice is resolved at high resolution, its contribution to the imaging signal is easily removed. This approach brings atomic resolution to biomolecules as well as to graphene itself. The cover shows hydrogen atoms (purple) on a graphene sheet (red), with a carbon atom (yellow tipped) near left centre. Yellow peaks are amorphous carbon.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature07094", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7202", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "454"
      }
    ], 
    "keywords": [
      "transmission electron microscope", 
      "light atoms", 
      "one-atom-thick sheet", 
      "two-dimensional honeycomb lattice", 
      "individual heavy atoms", 
      "atomic-scale features", 
      "solid-state surfaces", 
      "ultrathin graphene", 
      "tunneling microscope", 
      "graphene sheets", 
      "graphene", 
      "TEM technology", 
      "yellow peak", 
      "heavy atoms", 
      "honeycomb lattice", 
      "data acquisition rate", 
      "atomic resolution", 
      "ideal support", 
      "electron microscopy", 
      "amorphous carbon", 
      "carbon atoms", 
      "hydrogen atoms", 
      "electron microscope", 
      "atoms", 
      "high resolution", 
      "acquisition rate", 
      "sample conductivity", 
      "microscope", 
      "single carbon", 
      "lattice", 
      "left center", 
      "carbon", 
      "technology", 
      "old technology", 
      "resolution", 
      "biomolecules", 
      "microscopy", 
      "sheets", 
      "low contrast", 
      "conductivity", 
      "hydrogen", 
      "peak", 
      "surface", 
      "dynamics", 
      "imaging", 
      "signals", 
      "molecules", 
      "range", 
      "limitations", 
      "contribution", 
      "center", 
      "features", 
      "approach", 
      "terms", 
      "contrast", 
      "rate", 
      "cleanliness", 
      "support", 
      "cover"
    ], 
    "name": "Imaging and dynamics of light atoms and molecules on graphene", 
    "pagination": "319-322", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032754432"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07094"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18633414"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07094", 
      "https://app.dimensions.ai/details/publication/pub.1032754432"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_469.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature07094"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07094'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07094'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07094'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07094'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      94 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07094 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N902537af922b43e8964dfff13fed22a4
6 schema:citation sg:pub.10.1038/24521
7 sg:pub.10.1038/416826a
8 sg:pub.10.1038/nature02817
9 sg:pub.10.1038/nature04233
10 sg:pub.10.1038/nature04235
11 sg:pub.10.1038/nature05545
12 sg:pub.10.1038/nnano.2007.141
13 sg:pub.10.1038/nnano.2007.187
14 schema:datePublished 2008-07-01
15 schema:datePublishedReg 2008-07-01
16 schema:description Imaging atoms: 'Invisible' graphene brings electron microscopy to single carbons and hydrogensScanning tunnelling microscopes made it possible to image atomic-scale features on a solid-state surface. But they have limitations in terms of sample conductivity, cleanliness and data acquisition rate. An older technology, the transmission electron microscope (TEM), meanwhile evolved to be able to image individual heavy atoms. But lighter atoms remained beyond its range because of their low contrast. Enter graphene, the one-atom-thick sheet of carbon atoms packed in a dense two-dimensional honeycomb lattice. Meyer et al. show that atoms as small as carbon and even hydrogen adsorbed onto graphene can be imaged using standard TEM technology. Ultrathin graphene is an ideal support, either invisible or, if the lattice is resolved at high resolution, its contribution to the imaging signal is easily removed. This approach brings atomic resolution to biomolecules as well as to graphene itself. The cover shows hydrogen atoms (purple) on a graphene sheet (red), with a carbon atom (yellow tipped) near left centre. Yellow peaks are amorphous carbon.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Nbe32d38875f243f690198fdce451952b
20 Ncae6640c17204280b5672471fddaf286
21 sg:journal.1018957
22 schema:keywords TEM technology
23 acquisition rate
24 amorphous carbon
25 approach
26 atomic resolution
27 atomic-scale features
28 atoms
29 biomolecules
30 carbon
31 carbon atoms
32 center
33 cleanliness
34 conductivity
35 contrast
36 contribution
37 cover
38 data acquisition rate
39 dynamics
40 electron microscope
41 electron microscopy
42 features
43 graphene
44 graphene sheets
45 heavy atoms
46 high resolution
47 honeycomb lattice
48 hydrogen
49 hydrogen atoms
50 ideal support
51 imaging
52 individual heavy atoms
53 lattice
54 left center
55 light atoms
56 limitations
57 low contrast
58 microscope
59 microscopy
60 molecules
61 old technology
62 one-atom-thick sheet
63 peak
64 range
65 rate
66 resolution
67 sample conductivity
68 sheets
69 signals
70 single carbon
71 solid-state surfaces
72 support
73 surface
74 technology
75 terms
76 transmission electron microscope
77 tunneling microscope
78 two-dimensional honeycomb lattice
79 ultrathin graphene
80 yellow peak
81 schema:name Imaging and dynamics of light atoms and molecules on graphene
82 schema:pagination 319-322
83 schema:productId N570d48e3940f4b38bec344065b3c1687
84 Nbf1dc057ba394ba79535a9adaf5abe51
85 Nfeb611ae5c0740c7ad1256184b08fcd4
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032754432
87 https://doi.org/10.1038/nature07094
88 schema:sdDatePublished 2022-11-24T20:52
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Ne4285cdf675d4f2c82219a9489a46f4e
91 schema:url https://doi.org/10.1038/nature07094
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N570d48e3940f4b38bec344065b3c1687 schema:name doi
96 schema:value 10.1038/nature07094
97 rdf:type schema:PropertyValue
98 N5b50ff59f71743d89b86cd385f3d91ba rdf:first sg:person.0766475362.52
99 rdf:rest rdf:nil
100 N902537af922b43e8964dfff13fed22a4 rdf:first sg:person.01107342035.04
101 rdf:rest Nfc1dca16d81f4bd6a4d1c7aa14aa7aa5
102 Nbe32d38875f243f690198fdce451952b schema:volumeNumber 454
103 rdf:type schema:PublicationVolume
104 Nbf1dc057ba394ba79535a9adaf5abe51 schema:name pubmed_id
105 schema:value 18633414
106 rdf:type schema:PropertyValue
107 Ncae6640c17204280b5672471fddaf286 schema:issueNumber 7202
108 rdf:type schema:PublicationIssue
109 Ne4285cdf675d4f2c82219a9489a46f4e schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ned17d14d8e7149a792475473acf8d549 rdf:first sg:person.01046572263.84
112 rdf:rest N5b50ff59f71743d89b86cd385f3d91ba
113 Nfc1dca16d81f4bd6a4d1c7aa14aa7aa5 rdf:first sg:person.0604133562.55
114 rdf:rest Ned17d14d8e7149a792475473acf8d549
115 Nfeb611ae5c0740c7ad1256184b08fcd4 schema:name dimensions_id
116 schema:value pub.1032754432
117 rdf:type schema:PropertyValue
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
122 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
123 rdf:type schema:DefinedTerm
124 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
125 schema:name Technology
126 rdf:type schema:DefinedTerm
127 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
128 schema:name Nanotechnology
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0028-0836
131 1476-4687
132 schema:name Nature
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.01046572263.84 schema:affiliation grid-institutes:grid.184769.5
136 schema:familyName Crommie
137 schema:givenName M. F.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046572263.84
139 rdf:type schema:Person
140 sg:person.01107342035.04 schema:affiliation grid-institutes:grid.184769.5
141 schema:familyName Meyer
142 schema:givenName Jannik C.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107342035.04
144 rdf:type schema:Person
145 sg:person.0604133562.55 schema:affiliation grid-institutes:grid.184769.5
146 schema:familyName Girit
147 schema:givenName C. O.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604133562.55
149 rdf:type schema:Person
150 sg:person.0766475362.52 schema:affiliation grid-institutes:grid.184769.5
151 schema:familyName Zettl
152 schema:givenName A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766475362.52
154 rdf:type schema:Person
155 sg:pub.10.1038/24521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032351800
156 https://doi.org/10.1038/24521
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/416826a schema:sameAs https://app.dimensions.ai/details/publication/pub.1039123726
159 https://doi.org/10.1038/416826a
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature02817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014928846
162 https://doi.org/10.1038/nature02817
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
165 https://doi.org/10.1038/nature04233
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
168 https://doi.org/10.1038/nature04235
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
171 https://doi.org/10.1038/nature05545
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nnano.2007.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004701300
174 https://doi.org/10.1038/nnano.2007.141
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2007.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005318250
177 https://doi.org/10.1038/nnano.2007.187
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.184769.5 schema:alternateName Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
180 schema:name Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
181 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...