Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Brian T. Wilhelm, Samuel Marguerat, Stephen Watt, Falk Schubert, Valerie Wood, Ian Goodhead, Christopher J. Penkett, Jane Rogers, Jürg Bähler

ABSTRACT

Recent data from several organisms indicate that the transcribed portions of genomes are larger and more complex than expected, and that many functional properties of transcripts are based not on coding sequences but on regulatory sequences in untranslated regions or non-coding RNAs. Alternative start and polyadenylation sites and regulation of intron splicing add additional dimensions to the rich transcriptional output. This transcriptional complexity has been sampled mainly using hybridization-based methods under one or few experimental conditions. Here we applied direct high-throughput sequencing of complementary DNAs (RNA-Seq), supplemented with data from high-density tiling arrays, to globally sample transcripts of the fission yeast Schizosaccharomyces pombe, independently from available gene annotations. We interrogated transcriptomes under multiple conditions, including rapid proliferation, meiotic differentiation and environmental stress, as well as in RNA processing mutants to reveal the dynamic plasticity of the transcriptional landscape as a function of environmental, developmental and genetic factors. High-throughput sequencing proved to be a powerful and quantitative method to sample transcriptomes deeply at maximal resolution. In contrast to hybridization, sequencing showed little, if any, background noise and was sensitive enough to detect widespread transcription in >90% of the genome, including traces of RNAs that were not robustly transcribed or rapidly degraded. The combined sequencing and strand-specific array data provide rich condition-specific information on novel, mostly non-coding transcripts, untranslated regions and gene structures, thus improving the existing genome annotation. Sequence reads spanning exon-exon or exon-intron junctions give unique insight into a surprising variability in splicing efficiency across introns, genes and conditions. Splicing efficiency was largely coordinated with transcript levels, and increased transcription led to increased splicing in test genes. Hundreds of introns showed such regulated splicing during cellular proliferation or differentiation. More... »

PAGES

1239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature07002

DOI

http://dx.doi.org/10.1038/nature07002

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044718936

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18488015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Eukaryotic Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Introns", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA Polymerase II", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Schizosaccharomyces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Schizosaccharomyces pombe Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilhelm", 
        "givenName": "Brian T.", 
        "id": "sg:person.01153516763.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153516763.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marguerat", 
        "givenName": "Samuel", 
        "id": "sg:person.0753754422.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753754422.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watt", 
        "givenName": "Stephen", 
        "id": "sg:person.01004521555.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004521555.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schubert", 
        "givenName": "Falk", 
        "id": "sg:person.0704743027.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704743027.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wood", 
        "givenName": "Valerie", 
        "id": "sg:person.01022370007.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022370007.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodhead", 
        "givenName": "Ian", 
        "id": "sg:person.01103710365.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103710365.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penkett", 
        "givenName": "Christopher J.", 
        "id": "sg:person.011776217767.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776217767.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Jane", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4hler", 
        "givenName": "J\u00fcrg", 
        "id": "sg:person.01351425155.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469275", 
          "https://doi.org/10.1038/nature04881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469275", 
          "https://doi.org/10.1038/nature04881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001469275", 
          "https://doi.org/10.1038/nature04881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2006.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002051397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1138341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002326113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002599777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005913886", 
          "https://doi.org/10.1038/nature05874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2006.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005961476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009114411", 
          "https://doi.org/10.1038/nature724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009114411", 
          "https://doi.org/10.1038/nature724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-002-0710-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009371351", 
          "https://doi.org/10.1007/s00438-002-0710-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-002-0710-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009371351", 
          "https://doi.org/10.1007/s00438-002-0710-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726297", 
          "https://doi.org/10.1038/ng951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726297", 
          "https://doi.org/10.1038/ng951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601091103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010938923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-10-r217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011786758", 
          "https://doi.org/10.1186/gb-2007-8-10-r217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(03)76023-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012809490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013282821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e02-08-0499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015112955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023915214", 
          "https://doi.org/10.1038/nsmb1343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-4-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025183945", 
          "https://doi.org/10.1186/1471-2164-4-27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277268", 
          "https://doi.org/10.1038/ng1704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025277268", 
          "https://doi.org/10.1038/ng1704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025632491", 
          "https://doi.org/10.1038/nrg2083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2007.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026806244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2005.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031828560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2005.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031828560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb1354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167032", 
          "https://doi.org/10.1038/nsmb1354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb0207-103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042141499", 
          "https://doi.org/10.1038/nsmb0207-103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.25.15.6330-6337.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044279899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047511736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1420903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049771469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.01-10-0507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059352024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1088305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1989.tb03409.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079274545"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "Recent data from several organisms indicate that the transcribed portions of genomes are larger and more complex than expected, and that many functional properties of transcripts are based not on coding sequences but on regulatory sequences in untranslated regions or non-coding RNAs. Alternative start and polyadenylation sites and regulation of intron splicing add additional dimensions to the rich transcriptional output. This transcriptional complexity has been sampled mainly using hybridization-based methods under one or few experimental conditions. Here we applied direct high-throughput sequencing of complementary DNAs (RNA-Seq), supplemented with data from high-density tiling arrays, to globally sample transcripts of the fission yeast Schizosaccharomyces pombe, independently from available gene annotations. We interrogated transcriptomes under multiple conditions, including rapid proliferation, meiotic differentiation and environmental stress, as well as in RNA processing mutants to reveal the dynamic plasticity of the transcriptional landscape as a function of environmental, developmental and genetic factors. High-throughput sequencing proved to be a powerful and quantitative method to sample transcriptomes deeply at maximal resolution. In contrast to hybridization, sequencing showed little, if any, background noise and was sensitive enough to detect widespread transcription in >90% of the genome, including traces of RNAs that were not robustly transcribed or rapidly degraded. The combined sequencing and strand-specific array data provide rich condition-specific information on novel, mostly non-coding transcripts, untranslated regions and gene structures, thus improving the existing genome annotation. Sequence reads spanning exon-exon or exon-intron junctions give unique insight into a surprising variability in splicing efficiency across introns, genes and conditions. Splicing efficiency was largely coordinated with transcript levels, and increased transcription led to increased splicing in test genes. Hundreds of introns showed such regulated splicing during cellular proliferation or differentiation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature07002", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5138350", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7199", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "453"
      }
    ], 
    "name": "Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution", 
    "pagination": "1239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d50362cb40e375d67c0483167c1a1368ab4ed18c2f018920a175e8bda50bb40c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18488015"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature07002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044718936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature07002", 
      "https://app.dimensions.ai/details/publication/pub.1044718936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature07002"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature07002'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature07002'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature07002'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature07002'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      76 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature07002 schema:about N06f31ec26ac54b71acbce6e47e54db09
2 N126daa514b4d4ee498214e10ccc549f4
3 N1e478ebb3f554da7af12e7dc2a9cb897
4 N2b8e6de22f894d48b6aec332707bf6ca
5 N45952a2d5d8a4ab8ab146d919a74d305
6 N5110ccb66c15422cbf61e31200b3eee8
7 N511e38ae351642ba88fc2058b75cbb83
8 N52dbcd01cfec48629b4d6b2936eb7143
9 N6d3308ba5797443c8cf912e7332894a4
10 N7612d6fb1dec42fa9e9ea7036e241e10
11 N77983b5460b04f04b8b7b93db867e533
12 N7a7db09c08b54e7ea2594bf88610d1ce
13 N9004737cabf5492294562924e2806634
14 Nc7e09e886ded45c88b4decdee1ab6978
15 Nc9620d239936474d9fdb3727049686dd
16 Ne2c47cd528594ea2a661c25b8557bf4f
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N9daf94db0be1433fb5ce7df339818ef4
20 schema:citation sg:pub.10.1007/s00438-002-0710-5
21 sg:pub.10.1038/nature04881
22 sg:pub.10.1038/nature05874
23 sg:pub.10.1038/nature724
24 sg:pub.10.1038/ng1704
25 sg:pub.10.1038/ng951
26 sg:pub.10.1038/nrg2083
27 sg:pub.10.1038/nsmb0207-103
28 sg:pub.10.1038/nsmb1343
29 sg:pub.10.1038/nsmb1354
30 sg:pub.10.1186/1471-2164-4-27
31 sg:pub.10.1186/gb-2007-8-10-r217
32 https://doi.org/10.1002/j.1460-2075.1989.tb03409.x
33 https://doi.org/10.1016/j.cell.2006.06.023
34 https://doi.org/10.1016/j.molcel.2005.04.007
35 https://doi.org/10.1016/j.molcel.2006.04.010
36 https://doi.org/10.1016/j.molcel.2007.03.002
37 https://doi.org/10.1016/j.tig.2006.01.001
38 https://doi.org/10.1016/s0076-6879(03)76023-6
39 https://doi.org/10.1073/pnas.0601091103
40 https://doi.org/10.1091/mbc.01-10-0507
41 https://doi.org/10.1091/mbc.e02-08-0499
42 https://doi.org/10.1093/bioinformatics/btl289
43 https://doi.org/10.1101/gr.1420903
44 https://doi.org/10.1126/science.1088305
45 https://doi.org/10.1126/science.1101312
46 https://doi.org/10.1126/science.1103388
47 https://doi.org/10.1126/science.1112014
48 https://doi.org/10.1126/science.1138341
49 https://doi.org/10.1128/mcb.25.15.6330-6337.2005
50 https://doi.org/10.1371/journal.pone.0001428
51 schema:datePublished 2008-06
52 schema:datePublishedReg 2008-06-01
53 schema:description Recent data from several organisms indicate that the transcribed portions of genomes are larger and more complex than expected, and that many functional properties of transcripts are based not on coding sequences but on regulatory sequences in untranslated regions or non-coding RNAs. Alternative start and polyadenylation sites and regulation of intron splicing add additional dimensions to the rich transcriptional output. This transcriptional complexity has been sampled mainly using hybridization-based methods under one or few experimental conditions. Here we applied direct high-throughput sequencing of complementary DNAs (RNA-Seq), supplemented with data from high-density tiling arrays, to globally sample transcripts of the fission yeast Schizosaccharomyces pombe, independently from available gene annotations. We interrogated transcriptomes under multiple conditions, including rapid proliferation, meiotic differentiation and environmental stress, as well as in RNA processing mutants to reveal the dynamic plasticity of the transcriptional landscape as a function of environmental, developmental and genetic factors. High-throughput sequencing proved to be a powerful and quantitative method to sample transcriptomes deeply at maximal resolution. In contrast to hybridization, sequencing showed little, if any, background noise and was sensitive enough to detect widespread transcription in >90% of the genome, including traces of RNAs that were not robustly transcribed or rapidly degraded. The combined sequencing and strand-specific array data provide rich condition-specific information on novel, mostly non-coding transcripts, untranslated regions and gene structures, thus improving the existing genome annotation. Sequence reads spanning exon-exon or exon-intron junctions give unique insight into a surprising variability in splicing efficiency across introns, genes and conditions. Splicing efficiency was largely coordinated with transcript levels, and increased transcription led to increased splicing in test genes. Hundreds of introns showed such regulated splicing during cellular proliferation or differentiation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N6ed2aaf759854880959a3d9d353fb108
58 N9f0d7b603ca44727bbd30f8d443e7ac7
59 sg:journal.1018957
60 schema:name Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution
61 schema:pagination 1239
62 schema:productId N2a31ee0c4fef467e904c693bddef56cd
63 Nc1e98caa8b5b4423bb82e1fa8d100548
64 Nc9cb6e491dec4d27b0fba523944ec810
65 Nd7014231bb8f444b9420ecb717e4b709
66 Ne4ce0c084ff944bfbf0b136d94c3ea5c
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718936
68 https://doi.org/10.1038/nature07002
69 schema:sdDatePublished 2019-04-10T15:39
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N477176fc4157470d92f27d060ce57966
72 schema:url https://www.nature.com/articles/nature07002
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N06f31ec26ac54b71acbce6e47e54db09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Sensitivity and Specificity
78 rdf:type schema:DefinedTerm
79 N08870bc086494c40ac7cb5cd10e7c6d3 rdf:first sg:person.0753754422.82
80 rdf:rest Nbbf964cbf38b4ed6875d0855325a9043
81 N126daa514b4d4ee498214e10ccc549f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Chromatin Immunoprecipitation
83 rdf:type schema:DefinedTerm
84 N1e478ebb3f554da7af12e7dc2a9cb897 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Alternative Splicing
86 rdf:type schema:DefinedTerm
87 N2a31ee0c4fef467e904c693bddef56cd schema:name dimensions_id
88 schema:value pub.1044718936
89 rdf:type schema:PropertyValue
90 N2b8e6de22f894d48b6aec332707bf6ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Exons
92 rdf:type schema:DefinedTerm
93 N45952a2d5d8a4ab8ab146d919a74d305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Oligonucleotide Array Sequence Analysis
95 rdf:type schema:DefinedTerm
96 N477176fc4157470d92f27d060ce57966 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N4f28c7c0fbe942b093de79453c0e1ab0 rdf:first sg:person.01351425155.03
99 rdf:rest rdf:nil
100 N5110ccb66c15422cbf61e31200b3eee8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Transcription, Genetic
102 rdf:type schema:DefinedTerm
103 N511e38ae351642ba88fc2058b75cbb83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Schizosaccharomyces pombe Proteins
105 rdf:type schema:DefinedTerm
106 N52dbcd01cfec48629b4d6b2936eb7143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Schizosaccharomyces
108 rdf:type schema:DefinedTerm
109 N5edae24ce8294230bda231de542752bb schema:affiliation https://www.grid.ac/institutes/grid.10306.34
110 schema:familyName Rogers
111 schema:givenName Jane
112 rdf:type schema:Person
113 N61c8e7589da34431bf3d131ccc2b6ace rdf:first N5edae24ce8294230bda231de542752bb
114 rdf:rest N4f28c7c0fbe942b093de79453c0e1ab0
115 N6c28bac48bfe43cfb61c03e034398a72 rdf:first sg:person.0704743027.09
116 rdf:rest Nb16f6b7850a14d70bb6538ad857a3a9f
117 N6d3308ba5797443c8cf912e7332894a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Eukaryotic Cells
119 rdf:type schema:DefinedTerm
120 N6ed2aaf759854880959a3d9d353fb108 schema:issueNumber 7199
121 rdf:type schema:PublicationIssue
122 N7612d6fb1dec42fa9e9ea7036e241e10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name RNA Polymerase II
124 rdf:type schema:DefinedTerm
125 N77983b5460b04f04b8b7b93db867e533 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name RNA, Fungal
127 rdf:type schema:DefinedTerm
128 N7a7db09c08b54e7ea2594bf88610d1ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Introns
130 rdf:type schema:DefinedTerm
131 N9004737cabf5492294562924e2806634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genes, Fungal
133 rdf:type schema:DefinedTerm
134 N9daf94db0be1433fb5ce7df339818ef4 rdf:first sg:person.01153516763.76
135 rdf:rest N08870bc086494c40ac7cb5cd10e7c6d3
136 N9f0d7b603ca44727bbd30f8d443e7ac7 schema:volumeNumber 453
137 rdf:type schema:PublicationVolume
138 Nb16f6b7850a14d70bb6538ad857a3a9f rdf:first sg:person.01022370007.63
139 rdf:rest Nbf93d02df82c43b2a7c7ecdc512c5bf7
140 Nbbf964cbf38b4ed6875d0855325a9043 rdf:first sg:person.01004521555.10
141 rdf:rest N6c28bac48bfe43cfb61c03e034398a72
142 Nbf93d02df82c43b2a7c7ecdc512c5bf7 rdf:first sg:person.01103710365.23
143 rdf:rest Nfb7ddd7b401f42829f0ae83c5417b663
144 Nc1e98caa8b5b4423bb82e1fa8d100548 schema:name nlm_unique_id
145 schema:value 0410462
146 rdf:type schema:PropertyValue
147 Nc7e09e886ded45c88b4decdee1ab6978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name RNA, Messenger
149 rdf:type schema:DefinedTerm
150 Nc9620d239936474d9fdb3727049686dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Gene Expression Regulation, Fungal
152 rdf:type schema:DefinedTerm
153 Nc9cb6e491dec4d27b0fba523944ec810 schema:name pubmed_id
154 schema:value 18488015
155 rdf:type schema:PropertyValue
156 Nd7014231bb8f444b9420ecb717e4b709 schema:name readcube_id
157 schema:value d50362cb40e375d67c0483167c1a1368ab4ed18c2f018920a175e8bda50bb40c
158 rdf:type schema:PropertyValue
159 Ne2c47cd528594ea2a661c25b8557bf4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Gene Expression Profiling
161 rdf:type schema:DefinedTerm
162 Ne4ce0c084ff944bfbf0b136d94c3ea5c schema:name doi
163 schema:value 10.1038/nature07002
164 rdf:type schema:PropertyValue
165 Nfb7ddd7b401f42829f0ae83c5417b663 rdf:first sg:person.011776217767.53
166 rdf:rest N61c8e7589da34431bf3d131ccc2b6ace
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
171 schema:name Genetics
172 rdf:type schema:DefinedTerm
173 sg:grant.5138350 http://pending.schema.org/fundedItem sg:pub.10.1038/nature07002
174 rdf:type schema:MonetaryGrant
175 sg:journal.1018957 schema:issn 0090-0028
176 1476-4687
177 schema:name Nature
178 rdf:type schema:Periodical
179 sg:person.01004521555.10 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
180 schema:familyName Watt
181 schema:givenName Stephen
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004521555.10
183 rdf:type schema:Person
184 sg:person.01022370007.63 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
185 schema:familyName Wood
186 schema:givenName Valerie
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022370007.63
188 rdf:type schema:Person
189 sg:person.01103710365.23 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
190 schema:familyName Goodhead
191 schema:givenName Ian
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103710365.23
193 rdf:type schema:Person
194 sg:person.01153516763.76 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
195 schema:familyName Wilhelm
196 schema:givenName Brian T.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153516763.76
198 rdf:type schema:Person
199 sg:person.011776217767.53 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
200 schema:familyName Penkett
201 schema:givenName Christopher J.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776217767.53
203 rdf:type schema:Person
204 sg:person.01351425155.03 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
205 schema:familyName Bähler
206 schema:givenName Jürg
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351425155.03
208 rdf:type schema:Person
209 sg:person.0704743027.09 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
210 schema:familyName Schubert
211 schema:givenName Falk
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704743027.09
213 rdf:type schema:Person
214 sg:person.0753754422.82 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
215 schema:familyName Marguerat
216 schema:givenName Samuel
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753754422.82
218 rdf:type schema:Person
219 sg:pub.10.1007/s00438-002-0710-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009371351
220 https://doi.org/10.1007/s00438-002-0710-5
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature04881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001469275
223 https://doi.org/10.1038/nature04881
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
226 https://doi.org/10.1038/nature05874
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nature724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009114411
229 https://doi.org/10.1038/nature724
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/ng1704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025277268
232 https://doi.org/10.1038/ng1704
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/ng951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009726297
235 https://doi.org/10.1038/ng951
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/nrg2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025632491
238 https://doi.org/10.1038/nrg2083
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nsmb0207-103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042141499
241 https://doi.org/10.1038/nsmb0207-103
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nsmb1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023915214
244 https://doi.org/10.1038/nsmb1343
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nsmb1354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167032
247 https://doi.org/10.1038/nsmb1354
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/1471-2164-4-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025183945
250 https://doi.org/10.1186/1471-2164-4-27
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/gb-2007-8-10-r217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011786758
253 https://doi.org/10.1186/gb-2007-8-10-r217
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1002/j.1460-2075.1989.tb03409.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079274545
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.cell.2006.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013282821
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.molcel.2005.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031828560
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.molcel.2006.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002051397
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.molcel.2007.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026806244
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.tig.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005961476
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s0076-6879(03)76023-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012809490
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1073/pnas.0601091103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010938923
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1091/mbc.01-10-0507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059352024
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1091/mbc.e02-08-0499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015112955
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/bioinformatics/btl289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047511736
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1101/gr.1420903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049771469
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1126/science.1088305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448444
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1126/science.1101312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450881
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.1138341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002326113
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1128/mcb.25.15.6330-6337.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044279899
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1371/journal.pone.0001428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002599777
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
294 schema:name Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...