What we can do and what we cannot do with fMRI View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

Nikos K. Logothetis

ABSTRACT

Functional MRI: Perfecting the imageFunctional magnetic resonance imaging (fMRI) has become the mainstay of neuroimaging in the neural and cognitive sciences. It measures haemodynamic changes following neural activity and has the potential, eventually, to reveal the intimate details of brain organization. But in a Review Article, Nikos Logothetis strikes a note of caution: the conclusions drawn from fMRI data often ignore the actual limitations of the methodology. Logothetis gives an overview of current fMRI technology and outlines our understanding of the haemodynamic signals and the constraints they impose on the interpretation of neuroimaging data. More... »

PAGES

869-878

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06976

DOI

http://dx.doi.org/10.1038/nature06976

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019522125

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18548064


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, and Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, and Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Logothetis", 
        "givenName": "Nikos K.", 
        "id": "sg:person.0601421747.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601421747.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn1977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050933556", 
          "https://doi.org/10.1038/nn1977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236224", 
          "https://doi.org/10.1038/nn1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03733-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040027094", 
          "https://doi.org/10.1007/978-3-662-03733-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0039-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000389616", 
          "https://doi.org/10.1007/978-1-4615-0039-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042357195", 
          "https://doi.org/10.1038/nrn1931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989503", 
          "https://doi.org/10.1038/nrn1519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557009", 
          "https://doi.org/10.1038/35084005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037797586", 
          "https://doi.org/10.1038/nrn701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375139a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049202358", 
          "https://doi.org/10.1038/375139a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032843665", 
          "https://doi.org/10.1038/34584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011204814320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013341710", 
          "https://doi.org/10.1023/a:1011204814320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00359-006-0117-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022317922", 
          "https://doi.org/10.1007/s00359-006-0117-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027759728", 
          "https://doi.org/10.1038/nature05193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030986319", 
          "https://doi.org/10.1038/nrn1784"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06", 
    "datePublishedReg": "2008-06-01", 
    "description": "Functional MRI: Perfecting the imageFunctional magnetic resonance imaging (fMRI) has become the mainstay of neuroimaging in the neural and cognitive sciences. It measures haemodynamic changes following neural activity and has the potential, eventually, to reveal the intimate details of brain organization. But in a Review Article, Nikos Logothetis strikes a note of caution: the conclusions drawn from fMRI data often ignore the actual limitations of the methodology. Logothetis gives an overview of current fMRI technology and outlines our understanding of the haemodynamic signals and the constraints they impose on the interpretation of neuroimaging data.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature06976", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7197", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "453"
      }
    ], 
    "keywords": [
      "cognitive science", 
      "brain organization", 
      "fMRI technology", 
      "neural activity", 
      "fMRI data", 
      "haemodynamic signals", 
      "Logothetis", 
      "magnetic resonance imaging", 
      "fMRI", 
      "neuroimaging", 
      "resonance imaging", 
      "note of caution", 
      "haemodynamic changes", 
      "organization", 
      "actual limitations", 
      "understanding", 
      "science", 
      "review article", 
      "article", 
      "limitations", 
      "caution", 
      "mainstay", 
      "interpretation", 
      "data", 
      "overview", 
      "conclusion", 
      "imaging", 
      "changes", 
      "methodology", 
      "activity", 
      "signals", 
      "note", 
      "potential", 
      "constraints", 
      "detail", 
      "technology", 
      "intimate details"
    ], 
    "name": "What we can do and what we cannot do with fMRI", 
    "pagination": "869-878", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019522125"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06976"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18548064"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06976", 
      "https://app.dimensions.ai/details/publication/pub.1019522125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_455.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature06976"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06976'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06976'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06976'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06976'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      22 PREDICATES      85 URIs      61 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06976 schema:about N2c3d393bc39f4a0ca868561501bee98f
2 N3ca8a361fb2b410f85d6f7ee3592c75a
3 N4152020237be4b20875c5e5460a9147e
4 N74eac338bca04648b7186767dc29a00e
5 N9c3e415d23fd4f8dbe4a9d16e5292557
6 N9f48784843f24865b87cd07a357a5986
7 anzsrc-for:11
8 anzsrc-for:1109
9 anzsrc-for:17
10 anzsrc-for:1701
11 schema:author Ncc1ef48092b14484a7159b8a8a797ad7
12 schema:citation sg:pub.10.1007/978-1-4615-0039-1_8
13 sg:pub.10.1007/978-3-662-03733-1
14 sg:pub.10.1007/s00359-006-0117-6
15 sg:pub.10.1023/a:1011204814320
16 sg:pub.10.1038/34584
17 sg:pub.10.1038/35084005
18 sg:pub.10.1038/375139a0
19 sg:pub.10.1038/nature05193
20 sg:pub.10.1038/nn1675
21 sg:pub.10.1038/nn1977
22 sg:pub.10.1038/nrn1519
23 sg:pub.10.1038/nrn1784
24 sg:pub.10.1038/nrn1931
25 sg:pub.10.1038/nrn701
26 schema:datePublished 2008-06
27 schema:datePublishedReg 2008-06-01
28 schema:description Functional MRI: Perfecting the imageFunctional magnetic resonance imaging (fMRI) has become the mainstay of neuroimaging in the neural and cognitive sciences. It measures haemodynamic changes following neural activity and has the potential, eventually, to reveal the intimate details of brain organization. But in a Review Article, Nikos Logothetis strikes a note of caution: the conclusions drawn from fMRI data often ignore the actual limitations of the methodology. Logothetis gives an overview of current fMRI technology and outlines our understanding of the haemodynamic signals and the constraints they impose on the interpretation of neuroimaging data.
29 schema:genre article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2b75021c02be4bf5b4090f0fa4e31dad
33 N42ab4f5b6f804217b8cf1ea9c815cc36
34 sg:journal.1018957
35 schema:keywords Logothetis
36 activity
37 actual limitations
38 article
39 brain organization
40 caution
41 changes
42 cognitive science
43 conclusion
44 constraints
45 data
46 detail
47 fMRI
48 fMRI data
49 fMRI technology
50 haemodynamic changes
51 haemodynamic signals
52 imaging
53 interpretation
54 intimate details
55 limitations
56 magnetic resonance imaging
57 mainstay
58 methodology
59 neural activity
60 neuroimaging
61 note
62 note of caution
63 organization
64 overview
65 potential
66 resonance imaging
67 review article
68 science
69 signals
70 technology
71 understanding
72 schema:name What we can do and what we cannot do with fMRI
73 schema:pagination 869-878
74 schema:productId N1a94cb9169b4456c88aef2e5fd5d6176
75 N8db054276b814b34a0254f87b2fd90c3
76 Nfa984b94ed15451abc423fd9645e3881
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019522125
78 https://doi.org/10.1038/nature06976
79 schema:sdDatePublished 2022-05-10T09:56
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N5c1496441abb44c789f6af22136c2271
82 schema:url https://doi.org/10.1038/nature06976
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N1a94cb9169b4456c88aef2e5fd5d6176 schema:name doi
87 schema:value 10.1038/nature06976
88 rdf:type schema:PropertyValue
89 N2b75021c02be4bf5b4090f0fa4e31dad schema:issueNumber 7197
90 rdf:type schema:PublicationIssue
91 N2c3d393bc39f4a0ca868561501bee98f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N3ca8a361fb2b410f85d6f7ee3592c75a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Animals
96 rdf:type schema:DefinedTerm
97 N4152020237be4b20875c5e5460a9147e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Brain
99 rdf:type schema:DefinedTerm
100 N42ab4f5b6f804217b8cf1ea9c815cc36 schema:volumeNumber 453
101 rdf:type schema:PublicationVolume
102 N5c1496441abb44c789f6af22136c2271 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N74eac338bca04648b7186767dc29a00e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Feedback, Physiological
106 rdf:type schema:DefinedTerm
107 N8db054276b814b34a0254f87b2fd90c3 schema:name pubmed_id
108 schema:value 18548064
109 rdf:type schema:PropertyValue
110 N9c3e415d23fd4f8dbe4a9d16e5292557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Sensitivity and Specificity
112 rdf:type schema:DefinedTerm
113 N9f48784843f24865b87cd07a357a5986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Magnetic Resonance Imaging
115 rdf:type schema:DefinedTerm
116 Ncc1ef48092b14484a7159b8a8a797ad7 rdf:first sg:person.0601421747.22
117 rdf:rest rdf:nil
118 Nfa984b94ed15451abc423fd9645e3881 schema:name dimensions_id
119 schema:value pub.1019522125
120 rdf:type schema:PropertyValue
121 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
122 schema:name Medical and Health Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
125 schema:name Neurosciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
128 schema:name Psychology and Cognitive Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
131 schema:name Psychology
132 rdf:type schema:DefinedTerm
133 sg:journal.1018957 schema:issn 0028-0836
134 1476-4687
135 schema:name Nature
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.0601421747.22 schema:affiliation grid-institutes:grid.5379.8
139 schema:familyName Logothetis
140 schema:givenName Nikos K.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601421747.22
142 rdf:type schema:Person
143 sg:pub.10.1007/978-1-4615-0039-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000389616
144 https://doi.org/10.1007/978-1-4615-0039-1_8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-662-03733-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040027094
147 https://doi.org/10.1007/978-3-662-03733-1
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00359-006-0117-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022317922
150 https://doi.org/10.1007/s00359-006-0117-6
151 rdf:type schema:CreativeWork
152 sg:pub.10.1023/a:1011204814320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013341710
153 https://doi.org/10.1023/a:1011204814320
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/34584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032843665
156 https://doi.org/10.1038/34584
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/35084005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006557009
159 https://doi.org/10.1038/35084005
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/375139a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049202358
162 https://doi.org/10.1038/375139a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature05193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027759728
165 https://doi.org/10.1038/nature05193
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nn1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017236224
168 https://doi.org/10.1038/nn1675
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nn1977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050933556
171 https://doi.org/10.1038/nn1977
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nrn1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047989503
174 https://doi.org/10.1038/nrn1519
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nrn1784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030986319
177 https://doi.org/10.1038/nrn1784
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nrn1931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042357195
180 https://doi.org/10.1038/nrn1931
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nrn701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037797586
183 https://doi.org/10.1038/nrn701
184 rdf:type schema:CreativeWork
185 grid-institutes:grid.5379.8 schema:alternateName Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, and Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, UK
186 schema:name Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, and Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, UK
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...