The missing memristor found View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-05

AUTHORS

Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, R. Stanley Williams

ABSTRACT

Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches. More... »

PAGES

80

Journal

TITLE

Nature

ISSUE

7191

VOLUME

453

Author Affiliations

Related Patents

  • Push-Pull Memory Cell Configured For Simultaneous Programming Of N-Channel And P-Channel Non-Volatile Transistors
  • Neural Network Circuit Comprising Nanoscale Synapses And Cmos Neurons
  • Array And Control Method For Flash Based Fpga Cell
  • Memristive Element And Electronic Memory Based On Such Elements
  • Operational Amplifier With Resistance Switch Crossbar Feedback
  • Self-Repairing Memristor And Method
  • Defect Engineering In Metal Oxides Via Surfaces
  • Using Memristor Devices As Switches For Mri Rf Coils
  • Nanoscale Three-Terminal Switching Device
  • Resistive Ram Devices For Programmable Logic Devices
  • Back To Back Resistive Random Access Memory Cells
  • Memory Cells, Non-Volatile Memory Arrays, Methods Of Operating Memory Cells, Methods Of Writing To And Writing From A Memory Cell, And Methods Of Programming A Memory Cell
  • Electrically Actuated Device
  • Memory Cells, Non-Volatile Memory Arrays, Methods Of Operating Memory Cells, Methods Of Reading To And Writing From A Memory Cell, And Methods Of Programming A Memory Cell
  • Memcapacitor Devices, Field Effect Transistor Devices, And, Non-Volatile Memory Arrays
  • Memristive Device
  • Tunneling Field Effect Transistors With A Variable Bandgap Channel
  • Resistive Ram Devices And Methods
  • Inductor Composed Of Capacitor Array
  • Front To Back Resistive Random Access Memory Cells
  • Gate-Tunable Atomically-Thin Memristors And Methods For Preparing Same And Applications Of Same
  • Methods And Systems For Cmos Implementation Of Neuron Synapse
  • Magnetic Tunnel Junction And Memristor Apparatus
  • Front To Back Resistive Random Access Memory Cells
  • Electrically Actuated Device And Method Of Controlling The Formation Of Dopants Therein
  • General Structure For Computational Random Access Memory (Cram)
  • Memristor Crossbar Neural Interface
  • Method And Apparatus For Modeling Memristor Devices
  • Memristor Comprising Film With Comb-Like Structure Of Nanocolumns Of Metal Oxide Embedded In A Metal Oxide Matrix
  • Resistive Ram Devices And Methods
  • Multilevel Resistive Information Storage And Retrieval
  • Ionic Devices With Interacting Species
  • Aggregated Spin-Torque Nano-Oscillators
  • Method And Apparatus For Performing Close-Loop Programming Of Resistive Memory Devices In Crossbar Array Based Hardware Circuits And Systems
  • Aggregated Spin-Torque Nano-Oscillators
  • Asymmetrical Memristor
  • Systems And Methods To Maintain Optimum Stoichiometry For Reactively Sputtered Films
  • Memristive Rf Switches
  • Electrically Actuated Device And Method Of Controlling The Formation Of Dopants Therein
  • Resistive Ram Devices And Methods
  • Compact Circuits And Adaptation Techniques For Implementing Adaptive Neurons And Synapses With Spike Timing Dependent Plasticity (Stdp).
  • Dna Sequencing Methods And Detectors And Systems For Carrying Out The Same
  • Ionic Devices Containing A Membrane Between Layers
  • Memcapacitor Devices, Field Effect Transistor Devices, Non-Volatile Memory Arrays, And Methods Of Programming
  • Magnetic Tunnel Junction And Memristor Apparatus
  • Nanowire-Based Memristor Devices
  • Memristive Antenna
  • Memristive Akers Logic Array
  • Signal Processing Devices Having One Or More Memristors
  • Electronic Device
  • Cross-Point Memory Cells, Non-Volatile Memory Arrays, Methods Of Reading A Memory Cell, Methods Of Programming A Memory Cell, Methods Of Writing To And Reading From A Memory Cell, And Computer Systems
  • Low-Field Magnetic Domain Wall Injection Pad And High-Density Storage Wire
  • Memristive Device
  • Magnetic Tunnel Junction And Memristor Apparatus
  • Memory Cells, Non-Volatile Memory Arrays, Methods Of Operating Memory Cells, Methods Of Writing To And Reading From A Memory Cell, And Methods Of Programming A Memory Cell
  • Memristive Adaptive Resonance Networks
  • Back To Back Resistive Random Access Memory Cells
  • Cross-Point Memory Cells, Non-Volatile Memory Arrays, Methods Of Reading A Memory Cell, Methods Of Programming A Memory Cell, Methods Of Writing To And Reading From A Memory Cell, And Computer Systems
  • Resistive Ram Devices And Methods
  • Thermal Management Apparatuses With Temperature Sensing Resistive Random Access Memory Devices And Methods Thereof
  • Programmable Resistive Elements As Variable Tuning Elements
  • Method And Apparatus For Modeling Memristor Devices
  • Dna Sequencing Methods And Detectors And Systems For Carrying Out The Same
  • Cross-Point Memory Cells, Non-Volatile Memory Arrays, Methods Of Reading A Memory Cell, Methods Of Programming A Memory Cell, Methods Of Writing To And Reading From A Memory Cell, And Computer Systems
  • Resistive Ram Devices And Methods
  • Memristor Device With Resistance Adjustable By Moving A Magnetic Wall By Spin Transfer And Use Of Said Memristor In A Neural Network
  • Memristive Adaptive Resonance Networks
  • Sensor Element Having A Piezoelectric Transducer
  • Memristive Element And Electronic Memory Based On Such Elements
  • Porous Siox Materials For Improvement In Siox Switching Device Performances
  • Photo-Responsive Memory Resistor And Method Of Operation
  • Signal-Processing Devices Having One Or More Memristors
  • Memory Diodes
  • Multi-Bit Mtj Memory Cell Using Two Variable Resistance Layers
  • Push-Pull Programmable Logic Device Cell
  • Methods For Resistive Switching Of Memristors
  • Field Effect Transistor Devices
  • Nanocomposite Material, Tunable Resistor Device, And Method
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature06932

    DOI

    http://dx.doi.org/10.1038/nature06932

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052714473

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18451858


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hewlett-Packard (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418547.b", 
              "name": [
                "HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strukov", 
            "givenName": "Dmitri B.", 
            "id": "sg:person.01346152624.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346152624.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hewlett-Packard (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418547.b", 
              "name": [
                "HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snider", 
            "givenName": "Gregory S.", 
            "id": "sg:person.0611035042.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611035042.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hewlett-Packard (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418547.b", 
              "name": [
                "HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stewart", 
            "givenName": "Duncan R.", 
            "id": "sg:person.01130455277.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130455277.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hewlett-Packard (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418547.b", 
              "name": [
                "HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "R. Stanley", 
            "id": "sg:person.01065660431.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065660431.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00339-004-3169-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007820447", 
              "https://doi.org/10.1007/s00339-004-3169-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016486670", 
              "https://doi.org/10.1038/nmat2023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2742989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016664982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200401534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016870677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1105-72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017269419", 
              "https://doi.org/10.1038/scientificamerican1105-72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.289.5482.1172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019677165", 
              "https://doi.org/10.1038/nnano.2007.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019677165", 
              "https://doi.org/10.1038/nnano.2007.75"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041741451", 
              "https://doi.org/10.1038/nmat1614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041741451", 
              "https://doi.org/10.1038/nmat1614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041881218", 
              "https://doi.org/10.1038/nature03190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041881218", 
              "https://doi.org/10.1038/nature03190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/33/3/306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044839829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200602564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050311206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp066266v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056068639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp066266v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056068639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl034795u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl034795u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.126902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057691001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1702530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057772755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2162860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057840816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2191874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057845018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2193328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057845195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2211147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057847499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2769961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057865422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.4.3548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060550780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.4.3548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060550780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jssc.2007.892207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061329690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/proc.1976.10092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061443228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tct.1971.1083337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061579020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2005.846936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2005.846936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077407910", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-05", 
        "datePublishedReg": "2008-05-01", 
        "description": "Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature06932", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7191", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "453"
          }
        ], 
        "name": "The missing memristor found", 
        "pagination": "80", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb1858572a6ced09cfd52ed16a869d6311dc73d97ee2c9827788ceca3c684cdd"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18451858"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature06932"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052714473"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature06932", 
          "https://app.dimensions.ai/details/publication/pub.1052714473"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature06932"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06932'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06932'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06932'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06932'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature06932 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Na589a27e59b94b86a23a0dd7fa855586
    4 schema:citation sg:pub.10.1007/s00339-004-3169-x
    5 sg:pub.10.1038/nature03190
    6 sg:pub.10.1038/nmat1614
    7 sg:pub.10.1038/nmat2023
    8 sg:pub.10.1038/nnano.2007.75
    9 sg:pub.10.1038/scientificamerican1105-72
    10 https://app.dimensions.ai/details/publication/pub.1077407910
    11 https://doi.org/10.1002/adma.200401534
    12 https://doi.org/10.1002/adma.200602564
    13 https://doi.org/10.1021/jp066266v
    14 https://doi.org/10.1021/nl034795u
    15 https://doi.org/10.1063/1.126902
    16 https://doi.org/10.1063/1.1702530
    17 https://doi.org/10.1063/1.2162860
    18 https://doi.org/10.1063/1.2191874
    19 https://doi.org/10.1063/1.2193328
    20 https://doi.org/10.1063/1.2211147
    21 https://doi.org/10.1063/1.2769961
    22 https://doi.org/10.1088/0034-4885/33/3/306
    23 https://doi.org/10.1103/physrevb.4.3548
    24 https://doi.org/10.1109/jssc.2007.892207
    25 https://doi.org/10.1109/proc.1976.10092
    26 https://doi.org/10.1109/tct.1971.1083337
    27 https://doi.org/10.1109/tnano.2005.846936
    28 https://doi.org/10.1126/science.289.5482.1172
    29 https://doi.org/10.1149/1.2742989
    30 schema:datePublished 2008-05
    31 schema:datePublishedReg 2008-05-01
    32 schema:description Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N761746586f2b47f8bcf68132035875e0
    37 N8e2dcb1e36d64c958a0be8359c1d6960
    38 sg:journal.1018957
    39 schema:name The missing memristor found
    40 schema:pagination 80
    41 schema:productId N8306d680d7b847589c603743f6bb07bd
    42 N868391f3724c4ddc8e00370c7ad470b6
    43 Nb21aa6bdea4b44b6a8ac550561133a70
    44 Nc51f4e0426e04aecb8e16ceda4794d0a
    45 Nfedb4a653e424829bf21198bec799978
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
    47 https://doi.org/10.1038/nature06932
    48 schema:sdDatePublished 2019-04-10T13:56
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N9e16dae6c58243de9d5cd7765e5e00a1
    51 schema:url https://www.nature.com/articles/nature06932
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N530606d5a37044bba2f0ff0b00cac7a8 rdf:first sg:person.0611035042.03
    56 rdf:rest Ncd651b2abe5246949f565055c1361677
    57 N761746586f2b47f8bcf68132035875e0 schema:issueNumber 7191
    58 rdf:type schema:PublicationIssue
    59 N8306d680d7b847589c603743f6bb07bd schema:name pubmed_id
    60 schema:value 18451858
    61 rdf:type schema:PropertyValue
    62 N868391f3724c4ddc8e00370c7ad470b6 schema:name readcube_id
    63 schema:value fb1858572a6ced09cfd52ed16a869d6311dc73d97ee2c9827788ceca3c684cdd
    64 rdf:type schema:PropertyValue
    65 N8e2dcb1e36d64c958a0be8359c1d6960 schema:volumeNumber 453
    66 rdf:type schema:PublicationVolume
    67 N9e16dae6c58243de9d5cd7765e5e00a1 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Na589a27e59b94b86a23a0dd7fa855586 rdf:first sg:person.01346152624.93
    70 rdf:rest N530606d5a37044bba2f0ff0b00cac7a8
    71 Nb21aa6bdea4b44b6a8ac550561133a70 schema:name doi
    72 schema:value 10.1038/nature06932
    73 rdf:type schema:PropertyValue
    74 Nb4d93e1898134eb79796341d11150085 rdf:first sg:person.01065660431.43
    75 rdf:rest rdf:nil
    76 Nc51f4e0426e04aecb8e16ceda4794d0a schema:name dimensions_id
    77 schema:value pub.1052714473
    78 rdf:type schema:PropertyValue
    79 Ncd651b2abe5246949f565055c1361677 rdf:first sg:person.01130455277.16
    80 rdf:rest Nb4d93e1898134eb79796341d11150085
    81 Nfedb4a653e424829bf21198bec799978 schema:name nlm_unique_id
    82 schema:value 0410462
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Chemical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Physical Chemistry (incl. Structural)
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1018957 schema:issn 0090-0028
    91 1476-4687
    92 schema:name Nature
    93 rdf:type schema:Periodical
    94 sg:person.01065660431.43 schema:affiliation https://www.grid.ac/institutes/grid.418547.b
    95 schema:familyName Williams
    96 schema:givenName R. Stanley
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065660431.43
    98 rdf:type schema:Person
    99 sg:person.01130455277.16 schema:affiliation https://www.grid.ac/institutes/grid.418547.b
    100 schema:familyName Stewart
    101 schema:givenName Duncan R.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130455277.16
    103 rdf:type schema:Person
    104 sg:person.01346152624.93 schema:affiliation https://www.grid.ac/institutes/grid.418547.b
    105 schema:familyName Strukov
    106 schema:givenName Dmitri B.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346152624.93
    108 rdf:type schema:Person
    109 sg:person.0611035042.03 schema:affiliation https://www.grid.ac/institutes/grid.418547.b
    110 schema:familyName Snider
    111 schema:givenName Gregory S.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611035042.03
    113 rdf:type schema:Person
    114 sg:pub.10.1007/s00339-004-3169-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007820447
    115 https://doi.org/10.1007/s00339-004-3169-x
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nature03190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881218
    118 https://doi.org/10.1038/nature03190
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/nmat1614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041741451
    121 https://doi.org/10.1038/nmat1614
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nmat2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486670
    124 https://doi.org/10.1038/nmat2023
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/nnano.2007.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019677165
    127 https://doi.org/10.1038/nnano.2007.75
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/scientificamerican1105-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017269419
    130 https://doi.org/10.1038/scientificamerican1105-72
    131 rdf:type schema:CreativeWork
    132 https://app.dimensions.ai/details/publication/pub.1077407910 schema:CreativeWork
    133 https://doi.org/10.1002/adma.200401534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016870677
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1002/adma.200602564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050311206
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1021/jp066266v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056068639
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1021/nl034795u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215707
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.126902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691001
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.1702530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057772755
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.2162860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057840816
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1063/1.2191874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845018
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1063/1.2193328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845195
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1063/1.2211147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057847499
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1063/1.2769961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057865422
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1088/0034-4885/33/3/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044839829
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevb.4.3548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060550780
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/jssc.2007.892207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061329690
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/proc.1976.10092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443228
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tct.1971.1083337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579020
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/tnano.2005.846936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711942
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1126/science.289.5482.1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947658
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1149/1.2742989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016664982
    170 rdf:type schema:CreativeWork
    171 https://www.grid.ac/institutes/grid.418547.b schema:alternateName Hewlett-Packard (United States)
    172 schema:name HP Labs, 1501 Page Mill Road, Palo Alto, California 94304, USA
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...