Quantum phase transition in a single-molecule quantum dot View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05-29

AUTHORS

Nicolas Roch, Serge Florens, Vincent Bouchiat, Wolfgang Wernsdorfer, Franck Balestro

ABSTRACT

Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics. More... »

PAGES

633

Journal

TITLE

Nature

ISSUE

7195

VOLUME

453

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06930

DOI

http://dx.doi.org/10.1038/nature06930

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011111867

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18509439


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS and Universit\u00e9 Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roch", 
        "givenName": "Nicolas", 
        "id": "sg:person.07463733343.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463733343.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS and Universit\u00e9 Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Florens", 
        "givenName": "Serge", 
        "id": "sg:person.01105763174.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105763174.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS and Universit\u00e9 Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchiat", 
        "givenName": "Vincent", 
        "id": "sg:person.01342352527.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342352527.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS and Universit\u00e9 Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wernsdorfer", 
        "givenName": "Wolfgang", 
        "id": "sg:person.01065057430.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS and Universit\u00e9 Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balestro", 
        "givenName": "Franck", 
        "id": "sg:person.01364035727.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364035727.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004887046", 
          "https://doi.org/10.1038/nature05556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005786324", 
          "https://doi.org/10.1038/nature00790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005786324", 
          "https://doi.org/10.1038/nature00790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007824539", 
          "https://doi.org/10.1038/nphys340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007824539", 
          "https://doi.org/10.1038/nphys340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009902899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009902899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.113309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.113309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.235301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013539863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.235301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013539863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b506240n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014025666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b506240n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014025666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014904086", 
          "https://doi.org/10.1038/nphys894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2149174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019696774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.166802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.016803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024681847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.016803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024681847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028562493", 
          "https://doi.org/10.1038/35015509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028562493", 
          "https://doi.org/10.1038/35015509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030576471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030576471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.1756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036095381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036095381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037426978", 
          "https://doi.org/10.1038/35042545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039027512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039027512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1857095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041516859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041640333", 
          "https://doi.org/10.1038/nmat2133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2760150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045110574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410333", 
          "https://doi.org/10.1038/35024031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35024031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410333", 
          "https://doi.org/10.1038/35024031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.9528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048160917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.9528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048160917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2203410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050103907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051276187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.140405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051276187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034893f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034893f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050799i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl050799i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01980004103019300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2716989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.245311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.245311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5376.540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511470752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669468"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-05-29", 
    "datePublishedReg": "2008-05-29", 
    "description": "Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06930", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7195", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "453"
      }
    ], 
    "name": "Quantum phase transition in a single-molecule quantum dot", 
    "pagination": "633", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34f139c0ad653735accc882ab6bed9ef14048c9f40eef3b64e193a94d4d7023f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18509439"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06930"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011111867"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06930", 
      "https://app.dimensions.ai/details/publication/pub.1011111867"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000582.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06930"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06930'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06930'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06930'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06930'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      64 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06930 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nfcceaa9de1844b2994aab71ffcf7f4b1
4 schema:citation sg:pub.10.1038/34373
5 sg:pub.10.1038/35015509
6 sg:pub.10.1038/35024031
7 sg:pub.10.1038/35042545
8 sg:pub.10.1038/nature00790
9 sg:pub.10.1038/nature05556
10 sg:pub.10.1038/nmat2133
11 sg:pub.10.1038/nphys340
12 sg:pub.10.1038/nphys894
13 https://doi.org/10.1017/cbo9780511470752
14 https://doi.org/10.1021/nl034893f
15 https://doi.org/10.1021/nl050799i
16 https://doi.org/10.1039/b506240n
17 https://doi.org/10.1051/jphys:01980004103019300
18 https://doi.org/10.1063/1.124354
19 https://doi.org/10.1063/1.1857095
20 https://doi.org/10.1063/1.2149174
21 https://doi.org/10.1063/1.2203410
22 https://doi.org/10.1063/1.2716989
23 https://doi.org/10.1063/1.2760150
24 https://doi.org/10.1103/physrevb.52.9528
25 https://doi.org/10.1103/physrevb.64.045328
26 https://doi.org/10.1103/physrevb.65.140405
27 https://doi.org/10.1103/physrevb.67.113309
28 https://doi.org/10.1103/physrevb.69.235301
29 https://doi.org/10.1103/physrevb.76.245311
30 https://doi.org/10.1103/physrevlett.61.125
31 https://doi.org/10.1103/physrevlett.82.3508
32 https://doi.org/10.1103/physrevlett.84.1756
33 https://doi.org/10.1103/physrevlett.85.1504
34 https://doi.org/10.1103/physrevlett.88.016803
35 https://doi.org/10.1103/physrevlett.97.166802
36 https://doi.org/10.1103/physrevlett.99.026601
37 https://doi.org/10.1126/science.1095452
38 https://doi.org/10.1126/science.1102068
39 https://doi.org/10.1126/science.281.5376.540
40 schema:datePublished 2008-05-29
41 schema:datePublishedReg 2008-05-29
42 schema:description Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N12ff5e7b0759471899675979b1206eb5
47 Nda983adafd6b41f6a13bc2e7e42180b1
48 sg:journal.1018957
49 schema:name Quantum phase transition in a single-molecule quantum dot
50 schema:pagination 633
51 schema:productId N07cdda3ad74a46f99f3716fae200bdee
52 N10c0847479674a9ba81f56fff9f1113c
53 N1624ce98634746c2a2ca93325ef46545
54 Nc9b0937166c34ed9a8b95c055f76e9a6
55 Ne5523e611062442db41b7c299fea91f3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011111867
57 https://doi.org/10.1038/nature06930
58 schema:sdDatePublished 2019-04-11T00:27
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nd738ee66f4b142e4a909d01eab6966a9
61 schema:url https://www.nature.com/articles/nature06930
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N025711b9f4e445b7bd8e907e0bc6d7e4 rdf:first sg:person.01364035727.02
66 rdf:rest rdf:nil
67 N07cdda3ad74a46f99f3716fae200bdee schema:name doi
68 schema:value 10.1038/nature06930
69 rdf:type schema:PropertyValue
70 N10c0847479674a9ba81f56fff9f1113c schema:name dimensions_id
71 schema:value pub.1011111867
72 rdf:type schema:PropertyValue
73 N12ff5e7b0759471899675979b1206eb5 schema:volumeNumber 453
74 rdf:type schema:PublicationVolume
75 N1624ce98634746c2a2ca93325ef46545 schema:name readcube_id
76 schema:value 34f139c0ad653735accc882ab6bed9ef14048c9f40eef3b64e193a94d4d7023f
77 rdf:type schema:PropertyValue
78 N59a2e6f5dd714c03b3889456e0a998cc rdf:first sg:person.01105763174.15
79 rdf:rest N88e8f3daf13e4bccbc385cc59a3a5c6a
80 N88e8f3daf13e4bccbc385cc59a3a5c6a rdf:first sg:person.01342352527.45
81 rdf:rest Nb346d466a4454a0997eee2e38405c999
82 Nb346d466a4454a0997eee2e38405c999 rdf:first sg:person.01065057430.25
83 rdf:rest N025711b9f4e445b7bd8e907e0bc6d7e4
84 Nc9b0937166c34ed9a8b95c055f76e9a6 schema:name nlm_unique_id
85 schema:value 0410462
86 rdf:type schema:PropertyValue
87 Nd738ee66f4b142e4a909d01eab6966a9 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nda983adafd6b41f6a13bc2e7e42180b1 schema:issueNumber 7195
90 rdf:type schema:PublicationIssue
91 Ne5523e611062442db41b7c299fea91f3 schema:name pubmed_id
92 schema:value 18509439
93 rdf:type schema:PropertyValue
94 Nfcceaa9de1844b2994aab71ffcf7f4b1 rdf:first sg:person.07463733343.15
95 rdf:rest N59a2e6f5dd714c03b3889456e0a998cc
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1018957 schema:issn 0090-0028
103 1476-4687
104 schema:name Nature
105 rdf:type schema:Periodical
106 sg:person.01065057430.25 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
107 schema:familyName Wernsdorfer
108 schema:givenName Wolfgang
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065057430.25
110 rdf:type schema:Person
111 sg:person.01105763174.15 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
112 schema:familyName Florens
113 schema:givenName Serge
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105763174.15
115 rdf:type schema:Person
116 sg:person.01342352527.45 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
117 schema:familyName Bouchiat
118 schema:givenName Vincent
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342352527.45
120 rdf:type schema:Person
121 sg:person.01364035727.02 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
122 schema:familyName Balestro
123 schema:givenName Franck
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364035727.02
125 rdf:type schema:Person
126 sg:person.07463733343.15 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
127 schema:familyName Roch
128 schema:givenName Nicolas
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463733343.15
130 rdf:type schema:Person
131 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
132 https://doi.org/10.1038/34373
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35015509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028562493
135 https://doi.org/10.1038/35015509
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/35024031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046410333
138 https://doi.org/10.1038/35024031
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/35042545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426978
141 https://doi.org/10.1038/35042545
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature00790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005786324
144 https://doi.org/10.1038/nature00790
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature05556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887046
147 https://doi.org/10.1038/nature05556
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nmat2133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041640333
150 https://doi.org/10.1038/nmat2133
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nphys340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007824539
153 https://doi.org/10.1038/nphys340
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nphys894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014904086
156 https://doi.org/10.1038/nphys894
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/cbo9780511470752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669468
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/nl034893f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215727
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nl050799i schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216299
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/b506240n schema:sameAs https://app.dimensions.ai/details/publication/pub.1014025666
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1051/jphys:01980004103019300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990260
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.124354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688491
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.1857095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041516859
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.2149174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019696774
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.2203410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050103907
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.2716989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859784
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.2760150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045110574
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.52.9528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048160917
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.64.045328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039027512
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.65.140405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051276187
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.67.113309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010900393
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.69.235301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013539863
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.76.245311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623345
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.61.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797544
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.82.3508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036095381
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.84.1756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172949
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.85.1504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030576471
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.88.016803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024681847
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.97.166802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904103
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.99.026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009902899
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1095452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449446
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1102068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450937
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.281.5376.540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561888
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.450308.a schema:alternateName Institut Néel
213 schema:name Institut Néel, CNRS and Université Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...