DNA-guided crystallization of colloidal nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Dmytro Nykypanchuk, Mathew M. Maye, Daniel van der Lelie, Oleg Gang

ABSTRACT

Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only approximately 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions. More... »

PAGES

549

Journal

TITLE

Nature

ISSUE

7178

VOLUME

451

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06560

DOI

http://dx.doi.org/10.1038/nature06560

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006800579

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18235496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Single-Stranded", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Scattering, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transition Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Ray Diffraction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nykypanchuk", 
        "givenName": "Dmytro", 
        "id": "sg:person.0730426274.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730426274.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maye", 
        "givenName": "Mathew M.", 
        "id": "sg:person.01004747223.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747223.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Lelie", 
        "givenName": "Daniel", 
        "id": "sg:person.01275345266.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345266.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gang", 
        "givenName": "Oleg", 
        "id": "sg:person.01046147116.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046147116.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b604745a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001615714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200401593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012688038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500507102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021484242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0654229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027833729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0654229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027833729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/18/s05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031209157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707081", 
          "https://doi.org/10.1038/nmat1869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200700357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038577648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046790y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la046790y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041195954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048142409", 
          "https://doi.org/10.1038/nmat1826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048142409", 
          "https://doi.org/10.1038/nmat1826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja052255o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048329973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja052255o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048329973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200400651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050190252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051722133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051722133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00037a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056174102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052210l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052210l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3022337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057893758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.148303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.148303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/7/8/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064231383"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only approximately 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06560", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7178", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "451"
      }
    ], 
    "name": "DNA-guided crystallization of colloidal nanoparticles", 
    "pagination": "549", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2064d4f48eada836fe718ed913a53122b160b08b9459d62eee862c402ebcedaf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18235496"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06560"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006800579"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06560", 
      "https://app.dimensions.ai/details/publication/pub.1006800579"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06560"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06560'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06560'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06560'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06560'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      66 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06560 schema:about N0ad7376a01474491babb2891261cd9bd
2 N5bcb2fa3bdab4e4a8e1d18faf4e173dd
3 N619a208f14d64d2ebe966a0f7c477242
4 N6866f934ada84217ac10cef5cd5f8f1e
5 N8ea41172779641d79d23256d23be9419
6 Nad3ea5ebea3843d3852dd8a0d7f0cdfb
7 Nadc1f5b9e0d84ed2be5d10c610e9a960
8 Nb79ca564cf8443a4aadaab8f45b304a4
9 Ne0c2507f72fa4934b1812b4f3155c6ad
10 Nf65f50dd4f0b43c1aa21f34783538510
11 anzsrc-for:03
12 anzsrc-for:0306
13 schema:author N3a3a934037f44fc4aeee1afdeed9170e
14 schema:citation sg:pub.10.1038/382607a0
15 sg:pub.10.1038/382609a0
16 sg:pub.10.1038/nature01702
17 sg:pub.10.1038/nature04414
18 sg:pub.10.1038/nmat1826
19 sg:pub.10.1038/nmat1869
20 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o
21 https://doi.org/10.1002/adma.200401593
22 https://doi.org/10.1002/anie.200400651
23 https://doi.org/10.1002/smll.200700357
24 https://doi.org/10.1021/ac0613582
25 https://doi.org/10.1021/ja052255o
26 https://doi.org/10.1021/ja0654229
27 https://doi.org/10.1021/jp040242b
28 https://doi.org/10.1021/la046790y
29 https://doi.org/10.1021/la0528955
30 https://doi.org/10.1021/la0637566
31 https://doi.org/10.1021/ma00037a016
32 https://doi.org/10.1021/nl0515495
33 https://doi.org/10.1021/nl052210l
34 https://doi.org/10.1039/b604745a
35 https://doi.org/10.1063/1.3022337
36 https://doi.org/10.1073/pnas.0500507102
37 https://doi.org/10.1088/0953-8984/18/18/s05
38 https://doi.org/10.1103/physrevlett.89.148303
39 https://doi.org/10.1103/physrevlett.94.058302
40 https://doi.org/10.1209/0295-5075/7/8/005
41 schema:datePublished 2008-01
42 schema:datePublishedReg 2008-01-01
43 schema:description Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only approximately 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Ncf1a578dfaa94a2e8387f1034fb31c6d
48 Ne066b754a044428ab2ca17a44f88a551
49 sg:journal.1018957
50 schema:name DNA-guided crystallization of colloidal nanoparticles
51 schema:pagination 549
52 schema:productId N13a4b60a88564bd2b65947f70722470e
53 N6d1e02d43e0d4b59a972b254b54334d2
54 N88cffae4fbe74e53825021fd1f982510
55 Nb3c2e5f882a346dd95f6917975dfd6f3
56 Nc5296f57eb8c42edaf41acf4fceb08d0
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800579
58 https://doi.org/10.1038/nature06560
59 schema:sdDatePublished 2019-04-10T14:47
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N1d2373e0bba842e6aa934671ab52b992
62 schema:url https://www.nature.com/articles/nature06560
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N08d300e5f2dc4f69b18d1d6178d1c50a rdf:first sg:person.01004747223.26
67 rdf:rest N7b925f05aab44652abdefa20ca4edf99
68 N0ad7376a01474491babb2891261cd9bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name X-Ray Diffraction
70 rdf:type schema:DefinedTerm
71 N13a4b60a88564bd2b65947f70722470e schema:name pubmed_id
72 schema:value 18235496
73 rdf:type schema:PropertyValue
74 N1d2373e0bba842e6aa934671ab52b992 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N35930b4873684e52ba767001956e4090 schema:name Center for Functional Nanomaterials,
77 rdf:type schema:Organization
78 N3a3a934037f44fc4aeee1afdeed9170e rdf:first sg:person.0730426274.23
79 rdf:rest N08d300e5f2dc4f69b18d1d6178d1c50a
80 N5bcb2fa3bdab4e4a8e1d18faf4e173dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Nucleic Acid Conformation
82 rdf:type schema:DefinedTerm
83 N619a208f14d64d2ebe966a0f7c477242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Transition Temperature
85 rdf:type schema:DefinedTerm
86 N6866f934ada84217ac10cef5cd5f8f1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name DNA, Single-Stranded
88 rdf:type schema:DefinedTerm
89 N6d1e02d43e0d4b59a972b254b54334d2 schema:name dimensions_id
90 schema:value pub.1006800579
91 rdf:type schema:PropertyValue
92 N7839fee4dff94e1fa00a31a3d3d69743 schema:name Center for Functional Nanomaterials,
93 rdf:type schema:Organization
94 N7b925f05aab44652abdefa20ca4edf99 rdf:first sg:person.01275345266.39
95 rdf:rest Nd343b57267624d63a267c02e7d4d1818
96 N88cffae4fbe74e53825021fd1f982510 schema:name doi
97 schema:value 10.1038/nature06560
98 rdf:type schema:PropertyValue
99 N8ea41172779641d79d23256d23be9419 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Metal Nanoparticles
101 rdf:type schema:DefinedTerm
102 Nad3ea5ebea3843d3852dd8a0d7f0cdfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Scattering, Radiation
104 rdf:type schema:DefinedTerm
105 Nadc1f5b9e0d84ed2be5d10c610e9a960 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Colloids
107 rdf:type schema:DefinedTerm
108 Nb3c2e5f882a346dd95f6917975dfd6f3 schema:name nlm_unique_id
109 schema:value 0410462
110 rdf:type schema:PropertyValue
111 Nb79ca564cf8443a4aadaab8f45b304a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Gold
113 rdf:type schema:DefinedTerm
114 Nc5296f57eb8c42edaf41acf4fceb08d0 schema:name readcube_id
115 schema:value 2064d4f48eada836fe718ed913a53122b160b08b9459d62eee862c402ebcedaf
116 rdf:type schema:PropertyValue
117 Nc7eccfb8f15d46aebae9c926a79446c5 schema:name Center for Functional Nanomaterials,
118 rdf:type schema:Organization
119 Ncf1a578dfaa94a2e8387f1034fb31c6d schema:issueNumber 7178
120 rdf:type schema:PublicationIssue
121 Nd343b57267624d63a267c02e7d4d1818 rdf:first sg:person.01046147116.64
122 rdf:rest rdf:nil
123 Ne066b754a044428ab2ca17a44f88a551 schema:volumeNumber 451
124 rdf:type schema:PublicationVolume
125 Ne0c2507f72fa4934b1812b4f3155c6ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Thermodynamics
127 rdf:type schema:DefinedTerm
128 Nf65f50dd4f0b43c1aa21f34783538510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Crystallization
130 rdf:type schema:DefinedTerm
131 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
132 schema:name Chemical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Chemistry (incl. Structural)
136 rdf:type schema:DefinedTerm
137 sg:journal.1018957 schema:issn 0090-0028
138 1476-4687
139 schema:name Nature
140 rdf:type schema:Periodical
141 sg:person.01004747223.26 schema:affiliation N7839fee4dff94e1fa00a31a3d3d69743
142 schema:familyName Maye
143 schema:givenName Mathew M.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747223.26
145 rdf:type schema:Person
146 sg:person.01046147116.64 schema:affiliation Nc7eccfb8f15d46aebae9c926a79446c5
147 schema:familyName Gang
148 schema:givenName Oleg
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046147116.64
150 rdf:type schema:Person
151 sg:person.01275345266.39 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
152 schema:familyName van der Lelie
153 schema:givenName Daniel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345266.39
155 rdf:type schema:Person
156 sg:person.0730426274.23 schema:affiliation N35930b4873684e52ba767001956e4090
157 schema:familyName Nykypanchuk
158 schema:givenName Dmytro
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730426274.23
160 rdf:type schema:Person
161 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
162 https://doi.org/10.1038/382607a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
165 https://doi.org/10.1038/382609a0
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature01702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578633
168 https://doi.org/10.1038/nature01702
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
171 https://doi.org/10.1038/nature04414
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat1826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048142409
174 https://doi.org/10.1038/nmat1826
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat1869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707081
177 https://doi.org/10.1038/nmat1869
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817452
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/adma.200401593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012688038
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/anie.200400651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050190252
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/smll.200700357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038577648
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ac0613582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021436386
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/ja052255o schema:sameAs https://app.dimensions.ai/details/publication/pub.1048329973
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ja0654229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027833729
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/jp040242b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056055690
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/la046790y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041195954
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/la0528955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014403871
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/la0637566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151763
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ma00037a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056174102
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/nl0515495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051722133
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/nl052210l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216537
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/b604745a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001615714
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.3022337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057893758
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.0500507102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484242
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1088/0953-8984/18/18/s05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031209157
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.89.148303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825405
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.94.058302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829866
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1209/0295-5075/7/8/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231383
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
222 schema:name Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...