DNA-programmable nanoparticle crystallization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Sung Yong Park, Abigail K. R. Lytton-Jean, Byeongdu Lee, Steven Weigand, George C. Schatz, Chad A. Mirkin

ABSTRACT

It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures. More... »

PAGES

553

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06508

DOI

http://dx.doi.org/10.1038/nature06508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051955834

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18235497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Scattering, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Ray Diffraction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sung Yong", 
        "id": "sg:person.01014360764.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lytton-Jean", 
        "givenName": "Abigail K. R.", 
        "id": "sg:person.01227216474.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "X-ray Science Division, Advanced Photon Source, Argonne National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Byeongdu", 
        "id": "sg:person.0664340741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigand", 
        "givenName": "Steven", 
        "id": "sg:person.010754231755.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schatz", 
        "givenName": "George C.", 
        "id": "sg:person.01070047543.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirkin", 
        "givenName": "Chad A.", 
        "id": "sg:person.01332206101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007057689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016016952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016070296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020182863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025676091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/19/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/30/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7178", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "451"
      }
    ], 
    "name": "DNA-programmable nanoparticle crystallization", 
    "pagination": "553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18235497"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051955834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06508", 
      "https://app.dimensions.ai/details/publication/pub.1051955834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06508"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06508'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06508 schema:about N3a23f45876674102b76bdc92d80a2067
2 N47ded8099e824d5dbce1c60abde345c6
3 N61f88dc1d208434b899ed99e4f4a5684
4 N65661803abab491fa99715c5ea38ce8b
5 N9c9aead2fb8349bab5f4cf4a1cc8d0e7
6 Nd08f97535ff7461dab84de859cee419a
7 Nf099b0a3140244019503655c1b581956
8 Nf371c60e57914b3183109089f9313fa4
9 Nfd5d3b1a211f420d886c9ef708ee3085
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author Ne2dbfd2da9c64371a051664b0d0e37a2
13 schema:citation sg:pub.10.1038/24808
14 sg:pub.10.1038/382607a0
15 sg:pub.10.1038/382609a0
16 sg:pub.10.1038/nature01702
17 sg:pub.10.1038/nature03946
18 sg:pub.10.1038/nature04414
19 sg:pub.10.1038/nmat1572
20 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o
21 https://doi.org/10.1002/adma.200601178
22 https://doi.org/10.1016/j.jcp.2003.11.022
23 https://doi.org/10.1021/ac0613582
24 https://doi.org/10.1021/cr030067f
25 https://doi.org/10.1021/ja061980b
26 https://doi.org/10.1021/ja0776529
27 https://doi.org/10.1021/jp040242b
28 https://doi.org/10.1021/jp062212+
29 https://doi.org/10.1021/la0528955
30 https://doi.org/10.1021/la0637566
31 https://doi.org/10.1021/nl0493850
32 https://doi.org/10.1103/physrevb.67.212202
33 https://doi.org/10.1103/physrevb.68.224201
34 https://doi.org/10.1103/physrevlett.94.058302
35 https://doi.org/10.1103/physrevlett.95.128302
36 https://doi.org/10.1126/science.1125124
37 https://doi.org/10.1126/science.1125559
38 https://doi.org/10.1126/science.1125800
39 https://doi.org/10.1209/0295-5075/19/3/001
40 https://doi.org/10.1209/0295-5075/30/4/001
41 schema:datePublished 2008-01
42 schema:datePublishedReg 2008-01-01
43 schema:description It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nb0f0d934e59f47e69d6e7df1d5e4ecb7
48 Ndc552fb4c048452cb02dd138d935c11c
49 sg:journal.1018957
50 schema:name DNA-programmable nanoparticle crystallization
51 schema:pagination 553
52 schema:productId N22592fe50a7441c886f33f6f04e5489d
53 N51479256d0e94c1889616513e75bef25
54 N943faa69616547388633e684c988c93a
55 Nc3d8b60f511043a6977f584d4627259e
56 Nee5196a6c87d499d8b9b98572b8e2878
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
58 https://doi.org/10.1038/nature06508
59 schema:sdDatePublished 2019-04-10T23:12
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N4afc18fc1eca4021b4234c78d7225b46
62 schema:url https://www.nature.com/articles/nature06508
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N058103a53cd14acfae9549ad7cd7e047 rdf:first sg:person.0664340741.46
67 rdf:rest N7808bd20c6ad4c989e6d758b7f57534d
68 N22592fe50a7441c886f33f6f04e5489d schema:name dimensions_id
69 schema:value pub.1051955834
70 rdf:type schema:PropertyValue
71 N2a205606d3d44bfd84455aa399e9f8cd schema:name X-ray Science Division, Advanced Photon Source, Argonne National Laboratory
72 rdf:type schema:Organization
73 N38ffc89bcde84da6bc2aeb4af00912a5 rdf:first sg:person.01332206101.44
74 rdf:rest rdf:nil
75 N3a23f45876674102b76bdc92d80a2067 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name X-Ray Diffraction
77 rdf:type schema:DefinedTerm
78 N45b5fda61ceb44829af0436aa07b0296 rdf:first sg:person.01070047543.76
79 rdf:rest N38ffc89bcde84da6bc2aeb4af00912a5
80 N47ded8099e824d5dbce1c60abde345c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Metal Nanoparticles
82 rdf:type schema:DefinedTerm
83 N4afc18fc1eca4021b4234c78d7225b46 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N51479256d0e94c1889616513e75bef25 schema:name nlm_unique_id
86 schema:value 0410462
87 rdf:type schema:PropertyValue
88 N61f88dc1d208434b899ed99e4f4a5684 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Scattering, Radiation
90 rdf:type schema:DefinedTerm
91 N65661803abab491fa99715c5ea38ce8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name DNA
93 rdf:type schema:DefinedTerm
94 N7808bd20c6ad4c989e6d758b7f57534d rdf:first sg:person.010754231755.71
95 rdf:rest N45b5fda61ceb44829af0436aa07b0296
96 N943faa69616547388633e684c988c93a schema:name readcube_id
97 schema:value f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b
98 rdf:type schema:PropertyValue
99 N9c9aead2fb8349bab5f4cf4a1cc8d0e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Colloids
101 rdf:type schema:DefinedTerm
102 Nb0f0d934e59f47e69d6e7df1d5e4ecb7 schema:issueNumber 7178
103 rdf:type schema:PublicationIssue
104 Nc3d8b60f511043a6977f584d4627259e schema:name doi
105 schema:value 10.1038/nature06508
106 rdf:type schema:PropertyValue
107 Nd08f97535ff7461dab84de859cee419a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Thermodynamics
109 rdf:type schema:DefinedTerm
110 Nd534fa609c6a42fdb67e9eefd6ff2447 rdf:first sg:person.01227216474.12
111 rdf:rest N058103a53cd14acfae9549ad7cd7e047
112 Ndc552fb4c048452cb02dd138d935c11c schema:volumeNumber 451
113 rdf:type schema:PublicationVolume
114 Ne2dbfd2da9c64371a051664b0d0e37a2 rdf:first sg:person.01014360764.94
115 rdf:rest Nd534fa609c6a42fdb67e9eefd6ff2447
116 Nee5196a6c87d499d8b9b98572b8e2878 schema:name pubmed_id
117 schema:value 18235497
118 rdf:type schema:PropertyValue
119 Nf099b0a3140244019503655c1b581956 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Crystallization
121 rdf:type schema:DefinedTerm
122 Nf371c60e57914b3183109089f9313fa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Gold
124 rdf:type schema:DefinedTerm
125 Nfd5d3b1a211f420d886c9ef708ee3085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Base Sequence
127 rdf:type schema:DefinedTerm
128 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
129 schema:name Chemical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Chemistry (incl. Structural)
133 rdf:type schema:DefinedTerm
134 sg:journal.1018957 schema:issn 0090-0028
135 1476-4687
136 schema:name Nature
137 rdf:type schema:Periodical
138 sg:person.01014360764.94 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
139 schema:familyName Park
140 schema:givenName Sung Yong
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94
142 rdf:type schema:Person
143 sg:person.01070047543.76 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
144 schema:familyName Schatz
145 schema:givenName George C.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76
147 rdf:type schema:Person
148 sg:person.010754231755.71 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
149 schema:familyName Weigand
150 schema:givenName Steven
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71
152 rdf:type schema:Person
153 sg:person.01227216474.12 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
154 schema:familyName Lytton-Jean
155 schema:givenName Abigail K. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12
157 rdf:type schema:Person
158 sg:person.01332206101.44 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
159 schema:familyName Mirkin
160 schema:givenName Chad A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44
162 rdf:type schema:Person
163 sg:person.0664340741.46 schema:affiliation N2a205606d3d44bfd84455aa399e9f8cd
164 schema:familyName Lee
165 schema:givenName Byeongdu
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46
167 rdf:type schema:Person
168 sg:pub.10.1038/24808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715254
169 https://doi.org/10.1038/24808
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
172 https://doi.org/10.1038/382607a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
175 https://doi.org/10.1038/382609a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature01702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578633
178 https://doi.org/10.1038/nature01702
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature03946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848798
181 https://doi.org/10.1038/nature03946
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
184 https://doi.org/10.1038/nature04414
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153822
187 https://doi.org/10.1038/nmat1572
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817452
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/adma.200601178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007057689
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jcp.2003.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016070296
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ac0613582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021436386
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cr030067f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363526
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ja061980b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052765286
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ja0776529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688861
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/jp040242b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056055690
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/jp062212+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909416
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/la0528955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014403871
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/la0637566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151763
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/nl0493850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216053
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.67.212202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532140
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.68.224201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341833
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.94.058302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829866
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.95.128302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120437
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1125124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025676091
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.1125559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020182863
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1125800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016016952
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1209/0295-5075/19/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228941
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1209/0295-5075/30/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230537
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
232 schema:name DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
233 Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...