DNA-programmable nanoparticle crystallization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Sung Yong Park, Abigail K. R. Lytton-Jean, Byeongdu Lee, Steven Weigand, George C. Schatz, Chad A. Mirkin

ABSTRACT

It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures. More... »

PAGES

553

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06508

DOI

http://dx.doi.org/10.1038/nature06508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051955834

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18235497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Scattering, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Ray Diffraction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sung Yong", 
        "id": "sg:person.01014360764.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lytton-Jean", 
        "givenName": "Abigail K. R.", 
        "id": "sg:person.01227216474.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "X-ray Science Division, Advanced Photon Source, Argonne National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Byeongdu", 
        "id": "sg:person.0664340741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigand", 
        "givenName": "Steven", 
        "id": "sg:person.010754231755.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schatz", 
        "givenName": "George C.", 
        "id": "sg:person.01070047543.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirkin", 
        "givenName": "Chad A.", 
        "id": "sg:person.01332206101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007057689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016016952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016070296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020182863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025676091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/19/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/30/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7178", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "451"
      }
    ], 
    "name": "DNA-programmable nanoparticle crystallization", 
    "pagination": "553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18235497"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051955834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06508", 
      "https://app.dimensions.ai/details/publication/pub.1051955834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06508"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06508'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06508 schema:about N137d045fa9534d36a03a8882cfbf50a6
2 N292445b6572e4ab4b10b0aa354cc5c1b
3 N36fd5413d9a34b2dacc91e4402435fa6
4 N402113e83580432b8b2ba11e7d69d42c
5 N6d8107326cec4058bc6a16c26f4b0c51
6 N90b50de9574342e489d5a6bce9cf67b3
7 N9b8595adf9ce4273b47b80802ca4edc8
8 Nb2331053a6dd43d5bf0a386db85d59c5
9 Ndfd87d9608a648ccbd6e509f14cbe921
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author N9e23ea9f8221427c98c9817a345bd1e9
13 schema:citation sg:pub.10.1038/24808
14 sg:pub.10.1038/382607a0
15 sg:pub.10.1038/382609a0
16 sg:pub.10.1038/nature01702
17 sg:pub.10.1038/nature03946
18 sg:pub.10.1038/nature04414
19 sg:pub.10.1038/nmat1572
20 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o
21 https://doi.org/10.1002/adma.200601178
22 https://doi.org/10.1016/j.jcp.2003.11.022
23 https://doi.org/10.1021/ac0613582
24 https://doi.org/10.1021/cr030067f
25 https://doi.org/10.1021/ja061980b
26 https://doi.org/10.1021/ja0776529
27 https://doi.org/10.1021/jp040242b
28 https://doi.org/10.1021/jp062212+
29 https://doi.org/10.1021/la0528955
30 https://doi.org/10.1021/la0637566
31 https://doi.org/10.1021/nl0493850
32 https://doi.org/10.1103/physrevb.67.212202
33 https://doi.org/10.1103/physrevb.68.224201
34 https://doi.org/10.1103/physrevlett.94.058302
35 https://doi.org/10.1103/physrevlett.95.128302
36 https://doi.org/10.1126/science.1125124
37 https://doi.org/10.1126/science.1125559
38 https://doi.org/10.1126/science.1125800
39 https://doi.org/10.1209/0295-5075/19/3/001
40 https://doi.org/10.1209/0295-5075/30/4/001
41 schema:datePublished 2008-01
42 schema:datePublishedReg 2008-01-01
43 schema:description It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N66c328e2241d4202a4774f1116ca0367
48 Nb05d12ac8a4a434d89de6664d45433b3
49 sg:journal.1018957
50 schema:name DNA-programmable nanoparticle crystallization
51 schema:pagination 553
52 schema:productId N0d41d838f1d14336b19dc1f2fb3784d1
53 N2be6cd248d3345b58e081fabf6468925
54 N34a0da263fae4b9d802f3405288d0159
55 N3c1fcfd8267244878b032211108aa6d8
56 Nc37523e5c31b4cd1bf19f0c6da9719ad
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
58 https://doi.org/10.1038/nature06508
59 schema:sdDatePublished 2019-04-10T23:12
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ne6b6a86abfc546ac84805ba5e643ad27
62 schema:url https://www.nature.com/articles/nature06508
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0d41d838f1d14336b19dc1f2fb3784d1 schema:name pubmed_id
67 schema:value 18235497
68 rdf:type schema:PropertyValue
69 N10dce7125e314906b2828602b78900d7 rdf:first sg:person.010754231755.71
70 rdf:rest N68196998e8c04a339035cf721b97bcbd
71 N137d045fa9534d36a03a8882cfbf50a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name X-Ray Diffraction
73 rdf:type schema:DefinedTerm
74 N25c81b1d44244f8d99aae13f28bfb5f6 rdf:first sg:person.01227216474.12
75 rdf:rest Nc45bcf5f95384407ba64965cfb2b92b5
76 N292445b6572e4ab4b10b0aa354cc5c1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Gold
78 rdf:type schema:DefinedTerm
79 N2be6cd248d3345b58e081fabf6468925 schema:name readcube_id
80 schema:value f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b
81 rdf:type schema:PropertyValue
82 N34a0da263fae4b9d802f3405288d0159 schema:name dimensions_id
83 schema:value pub.1051955834
84 rdf:type schema:PropertyValue
85 N36fd5413d9a34b2dacc91e4402435fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name DNA
87 rdf:type schema:DefinedTerm
88 N3c1fcfd8267244878b032211108aa6d8 schema:name nlm_unique_id
89 schema:value 0410462
90 rdf:type schema:PropertyValue
91 N3e0db529473d4a7c88fb7071deab4b1b rdf:first sg:person.01332206101.44
92 rdf:rest rdf:nil
93 N402113e83580432b8b2ba11e7d69d42c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Crystallization
95 rdf:type schema:DefinedTerm
96 N66c328e2241d4202a4774f1116ca0367 schema:volumeNumber 451
97 rdf:type schema:PublicationVolume
98 N68196998e8c04a339035cf721b97bcbd rdf:first sg:person.01070047543.76
99 rdf:rest N3e0db529473d4a7c88fb7071deab4b1b
100 N6d8107326cec4058bc6a16c26f4b0c51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Base Sequence
102 rdf:type schema:DefinedTerm
103 N90b50de9574342e489d5a6bce9cf67b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Scattering, Radiation
105 rdf:type schema:DefinedTerm
106 N9b8595adf9ce4273b47b80802ca4edc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Colloids
108 rdf:type schema:DefinedTerm
109 N9e23ea9f8221427c98c9817a345bd1e9 rdf:first sg:person.01014360764.94
110 rdf:rest N25c81b1d44244f8d99aae13f28bfb5f6
111 Naa834c3d2c164eb48a3883ef67c77cb9 schema:name X-ray Science Division, Advanced Photon Source, Argonne National Laboratory
112 rdf:type schema:Organization
113 Nb05d12ac8a4a434d89de6664d45433b3 schema:issueNumber 7178
114 rdf:type schema:PublicationIssue
115 Nb2331053a6dd43d5bf0a386db85d59c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Thermodynamics
117 rdf:type schema:DefinedTerm
118 Nc37523e5c31b4cd1bf19f0c6da9719ad schema:name doi
119 schema:value 10.1038/nature06508
120 rdf:type schema:PropertyValue
121 Nc45bcf5f95384407ba64965cfb2b92b5 rdf:first sg:person.0664340741.46
122 rdf:rest N10dce7125e314906b2828602b78900d7
123 Ndfd87d9608a648ccbd6e509f14cbe921 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Metal Nanoparticles
125 rdf:type schema:DefinedTerm
126 Ne6b6a86abfc546ac84805ba5e643ad27 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
129 schema:name Chemical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Chemistry (incl. Structural)
133 rdf:type schema:DefinedTerm
134 sg:journal.1018957 schema:issn 0090-0028
135 1476-4687
136 schema:name Nature
137 rdf:type schema:Periodical
138 sg:person.01014360764.94 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
139 schema:familyName Park
140 schema:givenName Sung Yong
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94
142 rdf:type schema:Person
143 sg:person.01070047543.76 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
144 schema:familyName Schatz
145 schema:givenName George C.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76
147 rdf:type schema:Person
148 sg:person.010754231755.71 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
149 schema:familyName Weigand
150 schema:givenName Steven
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71
152 rdf:type schema:Person
153 sg:person.01227216474.12 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
154 schema:familyName Lytton-Jean
155 schema:givenName Abigail K. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12
157 rdf:type schema:Person
158 sg:person.01332206101.44 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
159 schema:familyName Mirkin
160 schema:givenName Chad A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44
162 rdf:type schema:Person
163 sg:person.0664340741.46 schema:affiliation Naa834c3d2c164eb48a3883ef67c77cb9
164 schema:familyName Lee
165 schema:givenName Byeongdu
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46
167 rdf:type schema:Person
168 sg:pub.10.1038/24808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715254
169 https://doi.org/10.1038/24808
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
172 https://doi.org/10.1038/382607a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
175 https://doi.org/10.1038/382609a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature01702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578633
178 https://doi.org/10.1038/nature01702
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature03946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848798
181 https://doi.org/10.1038/nature03946
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
184 https://doi.org/10.1038/nature04414
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153822
187 https://doi.org/10.1038/nmat1572
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817452
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/adma.200601178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007057689
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jcp.2003.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016070296
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ac0613582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021436386
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cr030067f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363526
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ja061980b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052765286
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ja0776529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688861
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/jp040242b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056055690
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/jp062212+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909416
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/la0528955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014403871
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/la0637566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151763
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/nl0493850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216053
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.67.212202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532140
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.68.224201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341833
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.94.058302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829866
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.95.128302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120437
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1125124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025676091
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.1125559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020182863
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1125800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016016952
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1209/0295-5075/19/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228941
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1209/0295-5075/30/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230537
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
232 schema:name DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
233 Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...