DNA-programmable nanoparticle crystallization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Sung Yong Park, Abigail K. R. Lytton-Jean, Byeongdu Lee, Steven Weigand, George C. Schatz, Chad A. Mirkin

ABSTRACT

It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures. More... »

PAGES

553

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06508

DOI

http://dx.doi.org/10.1038/nature06508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051955834

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18235497


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Scattering, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "X-Ray Diffraction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sung Yong", 
        "id": "sg:person.01014360764.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lytton-Jean", 
        "givenName": "Abigail K. R.", 
        "id": "sg:person.01227216474.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "X-ray Science Division, Advanced Photon Source, Argonne National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Byeongdu", 
        "id": "sg:person.0664340741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weigand", 
        "givenName": "Steven", 
        "id": "sg:person.010754231755.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schatz", 
        "givenName": "George C.", 
        "id": "sg:person.01070047543.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirkin", 
        "givenName": "Chad A.", 
        "id": "sg:person.01332206101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.128302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006120437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007057689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp062212+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013153822", 
          "https://doi.org/10.1038/nmat1572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0528955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014403871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016016952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016070296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020182863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0776529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020688861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/24808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020715254", 
          "https://doi.org/10.1038/24808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848798", 
          "https://doi.org/10.1038/nature03946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025676091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.212202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052817452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030067f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053363526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp040242b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056055690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0493850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/19/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/30/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7178", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "451"
      }
    ], 
    "name": "DNA-programmable nanoparticle crystallization", 
    "pagination": "553", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18235497"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051955834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06508", 
      "https://app.dimensions.ai/details/publication/pub.1051955834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06508"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06508'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06508 schema:about N0559e2820ce14dc5a936900aeab3f9d2
2 N0d41162e77be46deba566312e73fd7ee
3 N348e294b0a3741c5a218805ea70148b4
4 N4799b04537a74346b3bf51c547d75b9c
5 N70ae79423d774db2a20b9543ed604e39
6 N8face5acb7944311a2839e37c666dba2
7 Na82fc8edee2c4a979654166db3c1989a
8 Nbd2f639463f74ef7a9a0f8e3eaaa835d
9 Nd17180142b784e6a807ca68673a2337c
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author N4440f9bbd59f46bfa0cebce4038f975f
13 schema:citation sg:pub.10.1038/24808
14 sg:pub.10.1038/382607a0
15 sg:pub.10.1038/382609a0
16 sg:pub.10.1038/nature01702
17 sg:pub.10.1038/nature03946
18 sg:pub.10.1038/nature04414
19 sg:pub.10.1038/nmat1572
20 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o
21 https://doi.org/10.1002/adma.200601178
22 https://doi.org/10.1016/j.jcp.2003.11.022
23 https://doi.org/10.1021/ac0613582
24 https://doi.org/10.1021/cr030067f
25 https://doi.org/10.1021/ja061980b
26 https://doi.org/10.1021/ja0776529
27 https://doi.org/10.1021/jp040242b
28 https://doi.org/10.1021/jp062212+
29 https://doi.org/10.1021/la0528955
30 https://doi.org/10.1021/la0637566
31 https://doi.org/10.1021/nl0493850
32 https://doi.org/10.1103/physrevb.67.212202
33 https://doi.org/10.1103/physrevb.68.224201
34 https://doi.org/10.1103/physrevlett.94.058302
35 https://doi.org/10.1103/physrevlett.95.128302
36 https://doi.org/10.1126/science.1125124
37 https://doi.org/10.1126/science.1125559
38 https://doi.org/10.1126/science.1125800
39 https://doi.org/10.1209/0295-5075/19/3/001
40 https://doi.org/10.1209/0295-5075/30/4/001
41 schema:datePublished 2008-01
42 schema:datePublishedReg 2008-01-01
43 schema:description It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N6327a8fd39db4d238ab985a66eded41f
48 Ne3e761bef4b54d019e936d0c1e3a6551
49 sg:journal.1018957
50 schema:name DNA-programmable nanoparticle crystallization
51 schema:pagination 553
52 schema:productId N0fe476e471b94eefb001db22d5be17ef
53 N39f62b222a064a318936a1e621e26127
54 N5bcf4659e7074ca0beeac569908293de
55 N67e2fca33eb84dceb583b429f8241cbf
56 N9e4c8b806a2e4d52a3640551b534528b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
58 https://doi.org/10.1038/nature06508
59 schema:sdDatePublished 2019-04-10T23:12
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb0b242fd25f740a487819f31f0835ac3
62 schema:url https://www.nature.com/articles/nature06508
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0559e2820ce14dc5a936900aeab3f9d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Metal Nanoparticles
68 rdf:type schema:DefinedTerm
69 N0d41162e77be46deba566312e73fd7ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Base Sequence
71 rdf:type schema:DefinedTerm
72 N0fe476e471b94eefb001db22d5be17ef schema:name doi
73 schema:value 10.1038/nature06508
74 rdf:type schema:PropertyValue
75 N2d2b0151dbe34101a7019f5ba0d110b5 rdf:first sg:person.0664340741.46
76 rdf:rest Nde199b56b28e4d549b03b67a6cd93c75
77 N348e294b0a3741c5a218805ea70148b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Colloids
79 rdf:type schema:DefinedTerm
80 N39f62b222a064a318936a1e621e26127 schema:name readcube_id
81 schema:value f77cbe27890fe28320a81f2d1775b1f997f417944fad16cf1335698ea493188b
82 rdf:type schema:PropertyValue
83 N42989daf52c04d568d7d7a17bedf51cd rdf:first sg:person.01332206101.44
84 rdf:rest rdf:nil
85 N4440f9bbd59f46bfa0cebce4038f975f rdf:first sg:person.01014360764.94
86 rdf:rest N8118351c5ab64ab2ac1e52cdd2dd44da
87 N4799b04537a74346b3bf51c547d75b9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name X-Ray Diffraction
89 rdf:type schema:DefinedTerm
90 N484e2dfa48ff4f5197a24e8aeab5c5f8 rdf:first sg:person.01070047543.76
91 rdf:rest N42989daf52c04d568d7d7a17bedf51cd
92 N5bcf4659e7074ca0beeac569908293de schema:name nlm_unique_id
93 schema:value 0410462
94 rdf:type schema:PropertyValue
95 N6327a8fd39db4d238ab985a66eded41f schema:issueNumber 7178
96 rdf:type schema:PublicationIssue
97 N67e2fca33eb84dceb583b429f8241cbf schema:name dimensions_id
98 schema:value pub.1051955834
99 rdf:type schema:PropertyValue
100 N70ae79423d774db2a20b9543ed604e39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Scattering, Radiation
102 rdf:type schema:DefinedTerm
103 N8118351c5ab64ab2ac1e52cdd2dd44da rdf:first sg:person.01227216474.12
104 rdf:rest N2d2b0151dbe34101a7019f5ba0d110b5
105 N8face5acb7944311a2839e37c666dba2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Gold
107 rdf:type schema:DefinedTerm
108 N9e4c8b806a2e4d52a3640551b534528b schema:name pubmed_id
109 schema:value 18235497
110 rdf:type schema:PropertyValue
111 Na82fc8edee2c4a979654166db3c1989a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Thermodynamics
113 rdf:type schema:DefinedTerm
114 Nb0b242fd25f740a487819f31f0835ac3 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nbd2f639463f74ef7a9a0f8e3eaaa835d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Crystallization
118 rdf:type schema:DefinedTerm
119 Nd17180142b784e6a807ca68673a2337c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name DNA
121 rdf:type schema:DefinedTerm
122 Nd65ddc1be56f453cabd4e5950c1021ec schema:name X-ray Science Division, Advanced Photon Source, Argonne National Laboratory
123 rdf:type schema:Organization
124 Nde199b56b28e4d549b03b67a6cd93c75 rdf:first sg:person.010754231755.71
125 rdf:rest N484e2dfa48ff4f5197a24e8aeab5c5f8
126 Ne3e761bef4b54d019e936d0c1e3a6551 schema:volumeNumber 451
127 rdf:type schema:PublicationVolume
128 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
129 schema:name Chemical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Chemistry (incl. Structural)
133 rdf:type schema:DefinedTerm
134 sg:journal.1018957 schema:issn 0090-0028
135 1476-4687
136 schema:name Nature
137 rdf:type schema:Periodical
138 sg:person.01014360764.94 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
139 schema:familyName Park
140 schema:givenName Sung Yong
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014360764.94
142 rdf:type schema:Person
143 sg:person.01070047543.76 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
144 schema:familyName Schatz
145 schema:givenName George C.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070047543.76
147 rdf:type schema:Person
148 sg:person.010754231755.71 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
149 schema:familyName Weigand
150 schema:givenName Steven
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754231755.71
152 rdf:type schema:Person
153 sg:person.01227216474.12 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
154 schema:familyName Lytton-Jean
155 schema:givenName Abigail K. R.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227216474.12
157 rdf:type schema:Person
158 sg:person.01332206101.44 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
159 schema:familyName Mirkin
160 schema:givenName Chad A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332206101.44
162 rdf:type schema:Person
163 sg:person.0664340741.46 schema:affiliation Nd65ddc1be56f453cabd4e5950c1021ec
164 schema:familyName Lee
165 schema:givenName Byeongdu
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664340741.46
167 rdf:type schema:Person
168 sg:pub.10.1038/24808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020715254
169 https://doi.org/10.1038/24808
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
172 https://doi.org/10.1038/382607a0
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
175 https://doi.org/10.1038/382609a0
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nature01702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578633
178 https://doi.org/10.1038/nature01702
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nature03946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848798
181 https://doi.org/10.1038/nature03946
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
184 https://doi.org/10.1038/nature04414
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013153822
187 https://doi.org/10.1038/nmat1572
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/1521-3773(20010803)40:15<2909::aid-anie2909>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1052817452
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/adma.200601178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007057689
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jcp.2003.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016070296
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ac0613582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021436386
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cr030067f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363526
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ja061980b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052765286
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ja0776529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020688861
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/jp040242b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056055690
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/jp062212+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909416
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/la0528955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014403871
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/la0637566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151763
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/nl0493850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216053
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.67.212202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532140
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.68.224201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341833
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.94.058302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829866
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.95.128302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006120437
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1125124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025676091
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.1125559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020182863
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1125800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016016952
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1209/0295-5075/19/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228941
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1209/0295-5075/30/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230537
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
232 schema:name DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A004, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
233 Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...