Magnetic monopoles in spin ice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01

AUTHORS

C. Castelnovo, R. Moessner, S. L. Sondhi

ABSTRACT

Poles apartWe are familiar with elementary particles that carry either negative or positive electric charge, such as electrons and protons, but there is no evidence of elementary particles with a net magnetic charge. Magnets tend to come with inseparable north and south poles, and there are no known magnetic monopoles despite concerted efforts to find them. But an intriguing theoretical study now proposes that magnetic monopoles may exist, not as elementary particles, but as emergent particles in exotic condensed matter magnetic systems such as 'spin ice'. The theory, based on an analogy to fractional electric charges seen, for example, in quantum Hall systems in two dimensions, can explain a mysterious phase transition that has been observed experimentally in spin ice. The cover, by Alessandro Canossa, depicts a magnetic monopole (red sphere) emerging from break-up of the dipole moment (arrows) of the underlying electronic degrees of freedom in spin ice. More... »

PAGES

42-45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06433

DOI

http://dx.doi.org/10.1038/nature06433

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013273782

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18172493


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castelnovo", 
        "givenName": "C.", 
        "id": "sg:person.01317035465.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035465.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, 01187 Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moessner", 
        "givenName": "R.", 
        "id": "sg:person.01272305540.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272305540.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PCTP and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "PCTP and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sondhi", 
        "givenName": "S. L.", 
        "id": "sg:person.0704424256.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704424256.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/20619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040860021", 
          "https://doi.org/10.1038/20619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01877590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044492382", 
          "https://doi.org/10.1007/bf01877590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Poles apartWe are familiar with elementary particles that carry either negative or positive electric charge, such as electrons and protons, but there is no evidence of elementary particles with a net magnetic charge. Magnets tend to come with inseparable north and south poles, and there are no known magnetic monopoles despite concerted efforts to find them. But an intriguing theoretical study now proposes that magnetic monopoles may exist, not as elementary particles, but as emergent particles in exotic condensed matter magnetic systems such as 'spin ice'. The theory, based on an analogy to fractional electric charges seen, for example, in quantum Hall systems in two dimensions, can explain a mysterious phase transition that has been observed experimentally in spin ice. The cover, by Alessandro Canossa, depicts a magnetic monopole (red sphere) emerging from break-up of the dipole moment (arrows) of the underlying electronic degrees of freedom in spin ice.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature06433", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7174", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "451"
      }
    ], 
    "keywords": [
      "spin ice", 
      "elementary particles", 
      "magnetic monopoles", 
      "quantum Hall systems", 
      "fractional electric charge", 
      "electric charge", 
      "mysterious phase transition", 
      "Hall systems", 
      "net magnetic charge", 
      "positive electric charge", 
      "emergent particles", 
      "electronic degrees", 
      "magnetic charges", 
      "magnetic systems", 
      "dipole moment", 
      "phase transition", 
      "South Pole", 
      "monopole", 
      "theoretical study", 
      "particles", 
      "charge", 
      "electrons", 
      "protons", 
      "magnets", 
      "transition", 
      "moment", 
      "ice", 
      "analogy", 
      "theory", 
      "poles", 
      "freedom", 
      "system", 
      "dimensions", 
      "Canossa", 
      "example", 
      "degree", 
      "evidence", 
      "study", 
      "efforts", 
      "cover", 
      "north"
    ], 
    "name": "Magnetic monopoles in spin ice", 
    "pagination": "42-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013273782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06433"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18172493"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06433", 
      "https://app.dimensions.ai/details/publication/pub.1013273782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_461.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature06433"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06433'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06433'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06433'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06433'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      70 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06433 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nd8779496b5664b408f01752cc6994e09
4 schema:citation sg:pub.10.1007/bf01877590
5 sg:pub.10.1038/20619
6 sg:pub.10.1038/nature03009
7 schema:datePublished 2008-01
8 schema:datePublishedReg 2008-01-01
9 schema:description Poles apartWe are familiar with elementary particles that carry either negative or positive electric charge, such as electrons and protons, but there is no evidence of elementary particles with a net magnetic charge. Magnets tend to come with inseparable north and south poles, and there are no known magnetic monopoles despite concerted efforts to find them. But an intriguing theoretical study now proposes that magnetic monopoles may exist, not as elementary particles, but as emergent particles in exotic condensed matter magnetic systems such as 'spin ice'. The theory, based on an analogy to fractional electric charges seen, for example, in quantum Hall systems in two dimensions, can explain a mysterious phase transition that has been observed experimentally in spin ice. The cover, by Alessandro Canossa, depicts a magnetic monopole (red sphere) emerging from break-up of the dipole moment (arrows) of the underlying electronic degrees of freedom in spin ice.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N637f5846f32946a6b4ee211ea50762b3
13 Nde5566eef1124dab938da4dd3db2bfce
14 sg:journal.1018957
15 schema:keywords Canossa
16 Hall systems
17 South Pole
18 analogy
19 charge
20 cover
21 degree
22 dimensions
23 dipole moment
24 efforts
25 electric charge
26 electronic degrees
27 electrons
28 elementary particles
29 emergent particles
30 evidence
31 example
32 fractional electric charge
33 freedom
34 ice
35 magnetic charges
36 magnetic monopoles
37 magnetic systems
38 magnets
39 moment
40 monopole
41 mysterious phase transition
42 net magnetic charge
43 north
44 particles
45 phase transition
46 poles
47 positive electric charge
48 protons
49 quantum Hall systems
50 spin ice
51 study
52 system
53 theoretical study
54 theory
55 transition
56 schema:name Magnetic monopoles in spin ice
57 schema:pagination 42-45
58 schema:productId N091f7f5d86914e13bb106e10a55dbe70
59 N9a856a655e894b699ddf071f1ac67647
60 Nf11d12f0f8d64d108999b52916794405
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013273782
62 https://doi.org/10.1038/nature06433
63 schema:sdDatePublished 2022-12-01T06:26
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nf1757fd498f9434598d1d9d3834eeb78
66 schema:url https://doi.org/10.1038/nature06433
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N091f7f5d86914e13bb106e10a55dbe70 schema:name pubmed_id
71 schema:value 18172493
72 rdf:type schema:PropertyValue
73 N637f5846f32946a6b4ee211ea50762b3 schema:issueNumber 7174
74 rdf:type schema:PublicationIssue
75 N9a1824ef354a4704a7fe9fb0d0985291 rdf:first sg:person.01272305540.63
76 rdf:rest Nf6ac3c752bf04ed9ab1178eac2534d11
77 N9a856a655e894b699ddf071f1ac67647 schema:name dimensions_id
78 schema:value pub.1013273782
79 rdf:type schema:PropertyValue
80 Nd8779496b5664b408f01752cc6994e09 rdf:first sg:person.01317035465.22
81 rdf:rest N9a1824ef354a4704a7fe9fb0d0985291
82 Nde5566eef1124dab938da4dd3db2bfce schema:volumeNumber 451
83 rdf:type schema:PublicationVolume
84 Nf11d12f0f8d64d108999b52916794405 schema:name doi
85 schema:value 10.1038/nature06433
86 rdf:type schema:PropertyValue
87 Nf1757fd498f9434598d1d9d3834eeb78 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nf6ac3c752bf04ed9ab1178eac2534d11 rdf:first sg:person.0704424256.32
90 rdf:rest rdf:nil
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1018957 schema:issn 0028-0836
98 1476-4687
99 schema:name Nature
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01272305540.63 schema:affiliation grid-institutes:grid.419560.f
103 schema:familyName Moessner
104 schema:givenName R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272305540.63
106 rdf:type schema:Person
107 sg:person.01317035465.22 schema:affiliation grid-institutes:grid.4991.5
108 schema:familyName Castelnovo
109 schema:givenName C.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317035465.22
111 rdf:type schema:Person
112 sg:person.0704424256.32 schema:affiliation grid-institutes:grid.16750.35
113 schema:familyName Sondhi
114 schema:givenName S. L.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704424256.32
116 rdf:type schema:Person
117 sg:pub.10.1007/bf01877590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044492382
118 https://doi.org/10.1007/bf01877590
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/20619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860021
121 https://doi.org/10.1038/20619
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432339
124 https://doi.org/10.1038/nature03009
125 rdf:type schema:CreativeWork
126 grid-institutes:grid.16750.35 schema:alternateName PCTP and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
127 schema:name PCTP and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
128 rdf:type schema:Organization
129 grid-institutes:grid.419560.f schema:alternateName Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
130 schema:name Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
131 Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK
132 rdf:type schema:Organization
133 grid-institutes:grid.4991.5 schema:alternateName Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK
134 schema:name Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...