Optical rogue waves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12-13

AUTHORS

D. R. Solli, C. Ropers, P. Koonath, B. Jalali

ABSTRACT

Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation. More... »

PAGES

1054

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06402

DOI

http://dx.doi.org/10.1038/nature06402

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045432022

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18075587


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Electrical Engineering, University of California, Los Angeles 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solli", 
        "givenName": "D. R.", 
        "id": "sg:person.0645734561.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645734561.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Department of Electrical Engineering, University of California, Los Angeles 90095, USA", 
            "Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ropers", 
        "givenName": "C.", 
        "id": "sg:person.0677461671.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677461671.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Electrical Engineering, University of California, Los Angeles 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koonath", 
        "givenName": "P.", 
        "id": "sg:person.0577621361.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577621361.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Electrical Engineering, University of California, Los Angeles 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jalali", 
        "givenName": "B.", 
        "id": "sg:person.0663324762.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663324762.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000148673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1206-86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005419499", 
          "https://doi.org/10.1038/scientificamerican1206-86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-46629-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009412138", 
          "https://doi.org/10.1007/3-540-46629-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(2003)33<863:nfiafw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010004434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.003989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010884182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.094501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019174835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.094501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019174835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2125(98)00045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022521023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211200500563x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023179236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.113904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023869390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.113904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023869390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2125(96)00020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025319204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/4017472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026244080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2142087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027280228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apor.2005.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039825718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apor.2005.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039825718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044618513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechflu.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044618513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430492b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046898442", 
          "https://doi.org/10.1038/430492b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430492b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046898442", 
          "https://doi.org/10.1038/430492b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112097007751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054019920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.173901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.173901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.014503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.014503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/50.908829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061183953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.6.001149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065177275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.24.000318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.000025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.000924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.27.001174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5670/oceanog.2005.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073067379"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12-13", 
    "datePublishedReg": "2007-12-13", 
    "description": "Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schr\u00f6dinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06402", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7172", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "450"
      }
    ], 
    "name": "Optical rogue waves", 
    "pagination": "1054", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d869bd221f96d700f34c6b771067e0563224bffe975ea45d3c2e5b51daee0846"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18075587"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06402"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045432022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06402", 
      "https://app.dimensions.ai/details/publication/pub.1045432022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06402"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06402'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06402'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06402'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06402'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      54 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06402 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N3f7f24358bfe49449b21305bc7db0693
4 schema:citation sg:pub.10.1007/3-540-46629-0_9
5 sg:pub.10.1038/430492b
6 sg:pub.10.1038/scientificamerican1206-86
7 https://doi.org/10.1016/j.apor.2005.02.001
8 https://doi.org/10.1016/j.euromechflu.2003.09.002
9 https://doi.org/10.1016/s0165-2125(96)00020-0
10 https://doi.org/10.1016/s0165-2125(98)00045-6
11 https://doi.org/10.1017/s002211200500563x
12 https://doi.org/10.1017/s0022112097007751
13 https://doi.org/10.1063/1.2142087
14 https://doi.org/10.1103/physrevlett.86.5831
15 https://doi.org/10.1103/physrevlett.88.173901
16 https://doi.org/10.1103/physrevlett.90.113904
17 https://doi.org/10.1103/physrevlett.96.014503
18 https://doi.org/10.1103/physrevlett.97.094501
19 https://doi.org/10.1103/revmodphys.78.1135
20 https://doi.org/10.1109/50.908829
21 https://doi.org/10.1175/1520-0485(2003)33<863:nfiafw>2.0.co;2
22 https://doi.org/10.1364/josab.6.001149
23 https://doi.org/10.1364/ol.24.000318
24 https://doi.org/10.1364/ol.25.000025
25 https://doi.org/10.1364/ol.27.000924
26 https://doi.org/10.1364/ol.27.001174
27 https://doi.org/10.1364/opex.13.003989
28 https://doi.org/10.2307/4017472
29 https://doi.org/10.5670/oceanog.2005.30
30 schema:datePublished 2007-12-13
31 schema:datePublishedReg 2007-12-13
32 schema:description Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N32711fb3f46c46518a1f1310ebb7011e
37 N58f0a909ed6d405a9fb0c9d676d7e2f0
38 sg:journal.1018957
39 schema:name Optical rogue waves
40 schema:pagination 1054
41 schema:productId N40cd9c37304c4bf08f3f4dcf38d4c039
42 N443fa366c2bc4473bec7a39038dd978a
43 N48f78143cee641b7b93249698851dd81
44 N772d0f85acc841c5bdde8250268e4efc
45 N8b809e7b199f4d75801a9c4edee1569b
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045432022
47 https://doi.org/10.1038/nature06402
48 schema:sdDatePublished 2019-04-10T17:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N831102b15f4a4fd4a3699a34b9793044
51 schema:url https://www.nature.com/articles/nature06402
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N03072a7143d749ffa0b8a3827bc0040e rdf:first sg:person.0577621361.51
56 rdf:rest Nd2ff57b1c5df47d7ac5c89636aa97551
57 N32711fb3f46c46518a1f1310ebb7011e schema:issueNumber 7172
58 rdf:type schema:PublicationIssue
59 N3f7f24358bfe49449b21305bc7db0693 rdf:first sg:person.0645734561.30
60 rdf:rest N9d0b809566d34035acac7545c61df046
61 N40cd9c37304c4bf08f3f4dcf38d4c039 schema:name readcube_id
62 schema:value d869bd221f96d700f34c6b771067e0563224bffe975ea45d3c2e5b51daee0846
63 rdf:type schema:PropertyValue
64 N443fa366c2bc4473bec7a39038dd978a schema:name doi
65 schema:value 10.1038/nature06402
66 rdf:type schema:PropertyValue
67 N48f78143cee641b7b93249698851dd81 schema:name pubmed_id
68 schema:value 18075587
69 rdf:type schema:PropertyValue
70 N58f0a909ed6d405a9fb0c9d676d7e2f0 schema:volumeNumber 450
71 rdf:type schema:PublicationVolume
72 N772d0f85acc841c5bdde8250268e4efc schema:name dimensions_id
73 schema:value pub.1045432022
74 rdf:type schema:PropertyValue
75 N831102b15f4a4fd4a3699a34b9793044 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N8b809e7b199f4d75801a9c4edee1569b schema:name nlm_unique_id
78 schema:value 0410462
79 rdf:type schema:PropertyValue
80 N9d0b809566d34035acac7545c61df046 rdf:first sg:person.0677461671.93
81 rdf:rest N03072a7143d749ffa0b8a3827bc0040e
82 Nd2ff57b1c5df47d7ac5c89636aa97551 rdf:first sg:person.0663324762.70
83 rdf:rest rdf:nil
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
88 schema:name Optical Physics
89 rdf:type schema:DefinedTerm
90 sg:journal.1018957 schema:issn 0090-0028
91 1476-4687
92 schema:name Nature
93 rdf:type schema:Periodical
94 sg:person.0577621361.51 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
95 schema:familyName Koonath
96 schema:givenName P.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577621361.51
98 rdf:type schema:Person
99 sg:person.0645734561.30 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
100 schema:familyName Solli
101 schema:givenName D. R.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645734561.30
103 rdf:type schema:Person
104 sg:person.0663324762.70 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
105 schema:familyName Jalali
106 schema:givenName B.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663324762.70
108 rdf:type schema:Person
109 sg:person.0677461671.93 schema:affiliation https://www.grid.ac/institutes/grid.419569.6
110 schema:familyName Ropers
111 schema:givenName C.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677461671.93
113 rdf:type schema:Person
114 sg:pub.10.1007/3-540-46629-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412138
115 https://doi.org/10.1007/3-540-46629-0_9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/430492b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046898442
118 https://doi.org/10.1038/430492b
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/scientificamerican1206-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005419499
121 https://doi.org/10.1038/scientificamerican1206-86
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.apor.2005.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039825718
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.euromechflu.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044618513
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0165-2125(96)00020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025319204
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0165-2125(98)00045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521023
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/s002211200500563x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023179236
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1017/s0022112097007751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054019920
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.2142087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280228
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.86.5831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000148673
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.88.173901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824766
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.90.113904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023869390
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.96.014503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831456
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.97.094501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019174835
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/revmodphys.78.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839606
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/50.908829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061183953
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1175/1520-0485(2003)33<863:nfiafw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010004434
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/josab.6.001149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065177275
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/ol.24.000318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218457
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/ol.25.000025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218955
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1364/ol.27.000924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220377
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1364/ol.27.001174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220450
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1364/opex.13.003989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010884182
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2307/4017472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026244080
166 rdf:type schema:CreativeWork
167 https://doi.org/10.5670/oceanog.2005.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073067379
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
170 schema:name Department of Electrical Engineering, University of California, Los Angeles 90095, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.419569.6 schema:alternateName Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy
173 schema:name Department of Electrical Engineering, University of California, Los Angeles 90095, USA
174 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin, Germany
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...