Controlling cavity reflectivity with a single quantum dot View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Dirk Englund, Andrei Faraon, Ilya Fushman, Nick Stoltz, Pierre Petroff, Jelena Vučković

ABSTRACT

Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities. More... »

PAGES

857

Journal

TITLE

Nature

ISSUE

7171

VOLUME

450

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06234

DOI

http://dx.doi.org/10.1038/nature06234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024436041

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18064008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Englund", 
        "givenName": "Dirk", 
        "id": "sg:person.011511137553.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511137553.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faraon", 
        "givenName": "Andrei", 
        "id": "sg:person.01171504023.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171504023.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fushman", 
        "givenName": "Ilya", 
        "id": "sg:person.010713557153.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713557153.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoltz", 
        "givenName": "Nick", 
        "id": "sg:person.01310355373.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310355373.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petroff", 
        "givenName": "Pierre", 
        "id": "sg:person.015412576605.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412576605.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vu\u010dkovi\u0107", 
        "givenName": "Jelena", 
        "id": "sg:person.0744340725.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744340725.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/9/184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003023283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2472534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.053823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.053823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.005550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018358501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558789", 
          "https://doi.org/10.1038/nature05586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2743750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019738819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031101061", 
          "https://doi.org/10.1038/nature03119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031101061", 
          "https://doi.org/10.1038/nature03119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2005.12.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840991", 
          "https://doi.org/10.1038/nature02063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840991", 
          "https://doi.org/10.1038/nature02063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051684955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051684955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053252412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053252412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2742789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053647728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4266/1/4/312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059140984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.18.001911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7171", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "450"
      }
    ], 
    "name": "Controlling cavity reflectivity with a single quantum dot", 
    "pagination": "857", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "746a2f956832e2d3c25a33ee13a68e92f80bf878a23214beef0ed1effa6ed16d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18064008"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024436041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06234", 
      "https://app.dimensions.ai/details/publication/pub.1024436041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06234'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06234 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N154c4b29a72b40e9a2bb22c9ba0a8ff7
4 schema:citation sg:pub.10.1038/22275
5 sg:pub.10.1038/nature02063
6 sg:pub.10.1038/nature03119
7 sg:pub.10.1038/nature03804
8 sg:pub.10.1038/nature05461
9 sg:pub.10.1038/nature05586
10 https://doi.org/10.1016/j.physe.2005.12.135
11 https://doi.org/10.1063/1.2472534
12 https://doi.org/10.1063/1.2742789
13 https://doi.org/10.1063/1.2743750
14 https://doi.org/10.1088/1367-2630/8/9/184
15 https://doi.org/10.1088/1464-4266/1/4/312
16 https://doi.org/10.1103/physreva.32.2287
17 https://doi.org/10.1103/physreva.72.052330
18 https://doi.org/10.1103/physreva.75.053823
19 https://doi.org/10.1103/physrevlett.78.3221
20 https://doi.org/10.1103/physrevlett.80.4157
21 https://doi.org/10.1103/physrevlett.83.4204
22 https://doi.org/10.1103/physrevlett.83.5166
23 https://doi.org/10.1103/physrevlett.92.127902
24 https://doi.org/10.1103/physrevlett.95.013904
25 https://doi.org/10.1103/physrevlett.96.153601
26 https://doi.org/10.1364/josab.18.001911
27 https://doi.org/10.1364/oe.15.005550
28 schema:datePublished 2007-12
29 schema:datePublishedReg 2007-12-01
30 schema:description Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N03ba510ca2c344f8bee71f55183317be
35 N27a8fdef854346c3861f5ad334027ce6
36 sg:journal.1018957
37 schema:name Controlling cavity reflectivity with a single quantum dot
38 schema:pagination 857
39 schema:productId N1c3c1bea1e674686ab9c16262012a538
40 N5ae7ec0fac4243f8b8fb061982f469b5
41 N6a2c654e13cd4ed1b13891fe5dbc0a55
42 N8591e86dc5f54ce5823d84781e23a23f
43 Nba6a571690b64581b89b4460c30b2379
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024436041
45 https://doi.org/10.1038/nature06234
46 schema:sdDatePublished 2019-04-10T18:31
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N6226fc5b55a54bceadb9caaa96f333f5
49 schema:url https://www.nature.com/articles/nature06234
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N03ba510ca2c344f8bee71f55183317be schema:issueNumber 7171
54 rdf:type schema:PublicationIssue
55 N154c4b29a72b40e9a2bb22c9ba0a8ff7 rdf:first sg:person.011511137553.48
56 rdf:rest Nbf85df8cf7db419bb27d0cb7eba10fdb
57 N1c3c1bea1e674686ab9c16262012a538 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N1f209576f6ae4227aed5e2a5c4a840cf rdf:first sg:person.010713557153.52
61 rdf:rest N5a5f3a91d6a54e9f96364ccb82f32ba9
62 N27a8fdef854346c3861f5ad334027ce6 schema:volumeNumber 450
63 rdf:type schema:PublicationVolume
64 N5a5f3a91d6a54e9f96364ccb82f32ba9 rdf:first sg:person.01310355373.78
65 rdf:rest Naec669936c1743909e95e3635f0631ae
66 N5ae7ec0fac4243f8b8fb061982f469b5 schema:name readcube_id
67 schema:value 746a2f956832e2d3c25a33ee13a68e92f80bf878a23214beef0ed1effa6ed16d
68 rdf:type schema:PropertyValue
69 N60329f691d0b489fab1bbf34a8fda12f rdf:first sg:person.0744340725.14
70 rdf:rest rdf:nil
71 N6226fc5b55a54bceadb9caaa96f333f5 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N6a2c654e13cd4ed1b13891fe5dbc0a55 schema:name pubmed_id
74 schema:value 18064008
75 rdf:type schema:PropertyValue
76 N8591e86dc5f54ce5823d84781e23a23f schema:name doi
77 schema:value 10.1038/nature06234
78 rdf:type schema:PropertyValue
79 Naec669936c1743909e95e3635f0631ae rdf:first sg:person.015412576605.70
80 rdf:rest N60329f691d0b489fab1bbf34a8fda12f
81 Nba6a571690b64581b89b4460c30b2379 schema:name dimensions_id
82 schema:value pub.1024436041
83 rdf:type schema:PropertyValue
84 Nbf85df8cf7db419bb27d0cb7eba10fdb rdf:first sg:person.01171504023.43
85 rdf:rest N1f209576f6ae4227aed5e2a5c4a840cf
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
90 schema:name Optical Physics
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.010713557153.52 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
97 schema:familyName Fushman
98 schema:givenName Ilya
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713557153.52
100 rdf:type schema:Person
101 sg:person.011511137553.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
102 schema:familyName Englund
103 schema:givenName Dirk
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511137553.48
105 rdf:type schema:Person
106 sg:person.01171504023.43 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
107 schema:familyName Faraon
108 schema:givenName Andrei
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171504023.43
110 rdf:type schema:Person
111 sg:person.01310355373.78 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
112 schema:familyName Stoltz
113 schema:givenName Nick
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310355373.78
115 rdf:type schema:Person
116 sg:person.015412576605.70 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
117 schema:familyName Petroff
118 schema:givenName Pierre
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412576605.70
120 rdf:type schema:Person
121 sg:person.0744340725.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
122 schema:familyName Vučković
123 schema:givenName Jelena
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744340725.14
125 rdf:type schema:Person
126 sg:pub.10.1038/22275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010070547
127 https://doi.org/10.1038/22275
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature02063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035840991
130 https://doi.org/10.1038/nature02063
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature03119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101061
133 https://doi.org/10.1038/nature03119
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature03804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008909605
136 https://doi.org/10.1038/nature03804
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature05461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023745423
139 https://doi.org/10.1038/nature05461
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature05586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558789
142 https://doi.org/10.1038/nature05586
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.physe.2005.12.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448820
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.2472534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687730
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.2742789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647728
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.2743750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019738819
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1367-2630/8/9/184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003023283
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/1464-4266/1/4/312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059140984
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.32.2287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473799
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.72.052330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051684955
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.75.053823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023372
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.78.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879203
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.80.4157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817429
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.83.4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820356
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.83.5166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820503
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.92.127902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053252412
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.95.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000461663
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.96.153601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554841
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/josab.18.001911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169954
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/oe.15.005550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018358501
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
181 schema:name Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
184 schema:name Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...