Controlling cavity reflectivity with a single quantum dot View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Dirk Englund, Andrei Faraon, Ilya Fushman, Nick Stoltz, Pierre Petroff, Jelena Vučković

ABSTRACT

Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities. More... »

PAGES

857

Journal

TITLE

Nature

ISSUE

7171

VOLUME

450

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06234

DOI

http://dx.doi.org/10.1038/nature06234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024436041

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18064008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Englund", 
        "givenName": "Dirk", 
        "id": "sg:person.011511137553.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511137553.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faraon", 
        "givenName": "Andrei", 
        "id": "sg:person.01171504023.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171504023.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fushman", 
        "givenName": "Ilya", 
        "id": "sg:person.010713557153.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713557153.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoltz", 
        "givenName": "Nick", 
        "id": "sg:person.01310355373.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310355373.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petroff", 
        "givenName": "Pierre", 
        "id": "sg:person.015412576605.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412576605.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Ginzton Laboratory, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vu\u010dkovi\u0107", 
        "givenName": "Jelena", 
        "id": "sg:person.0744340725.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744340725.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.013904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000461663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/9/184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003023283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2472534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008909605", 
          "https://doi.org/10.1038/nature03804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.053823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.053823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.005550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018358501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558789", 
          "https://doi.org/10.1038/nature05586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2743750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019738819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023745423", 
          "https://doi.org/10.1038/nature05461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031101061", 
          "https://doi.org/10.1038/nature03119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031101061", 
          "https://doi.org/10.1038/nature03119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2005.12.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.153601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033554841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840991", 
          "https://doi.org/10.1038/nature02063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035840991", 
          "https://doi.org/10.1038/nature02063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051684955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.052330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051684955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053252412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053252412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2742789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053647728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4266/1/4/312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059140984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.2287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.18.001911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065169954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7171", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "450"
      }
    ], 
    "name": "Controlling cavity reflectivity with a single quantum dot", 
    "pagination": "857", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "746a2f956832e2d3c25a33ee13a68e92f80bf878a23214beef0ed1effa6ed16d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18064008"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024436041"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06234", 
      "https://app.dimensions.ai/details/publication/pub.1024436041"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06234'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06234 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N995c458dd2864380b2f50c7e6fdf1c55
4 schema:citation sg:pub.10.1038/22275
5 sg:pub.10.1038/nature02063
6 sg:pub.10.1038/nature03119
7 sg:pub.10.1038/nature03804
8 sg:pub.10.1038/nature05461
9 sg:pub.10.1038/nature05586
10 https://doi.org/10.1016/j.physe.2005.12.135
11 https://doi.org/10.1063/1.2472534
12 https://doi.org/10.1063/1.2742789
13 https://doi.org/10.1063/1.2743750
14 https://doi.org/10.1088/1367-2630/8/9/184
15 https://doi.org/10.1088/1464-4266/1/4/312
16 https://doi.org/10.1103/physreva.32.2287
17 https://doi.org/10.1103/physreva.72.052330
18 https://doi.org/10.1103/physreva.75.053823
19 https://doi.org/10.1103/physrevlett.78.3221
20 https://doi.org/10.1103/physrevlett.80.4157
21 https://doi.org/10.1103/physrevlett.83.4204
22 https://doi.org/10.1103/physrevlett.83.5166
23 https://doi.org/10.1103/physrevlett.92.127902
24 https://doi.org/10.1103/physrevlett.95.013904
25 https://doi.org/10.1103/physrevlett.96.153601
26 https://doi.org/10.1364/josab.18.001911
27 https://doi.org/10.1364/oe.15.005550
28 schema:datePublished 2007-12
29 schema:datePublishedReg 2007-12-01
30 schema:description Solid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence. In the weak coupling regime, the quantum dot radiative lifetime is modified; in the strong coupling regime, the coupled quantum dot also modifies the cavity spectrum. Several proposals for scalable quantum information networks and quantum computation rely on direct probing of the cavity-quantum dot coupling, by means of resonant light scattering from strongly or weakly coupled quantum dots. Such experiments have recently been performed in atomic systems and superconducting circuit QED systems, but not in solid-state quantum dot-cavity QED systems. Here we present experimental evidence that this interaction can be probed in solid-state systems, and show that, as expected from theory, the quantum dot strongly modifies the cavity transmission and reflection spectra. We show that when the quantum dot is coupled to the cavity, photons that are resonant with its transition are prohibited from entering the cavity. We observe this effect as the quantum dot is tuned through the cavity and the coupling strength between them changes. At high intensity of the probe beam, we observe rapid saturation of the transmission dip. These measurements provide both a method for probing the cavity-quantum dot system and a step towards the realization of quantum devices based on coherent light scattering and large optical nonlinearities from quantum dots in photonic crystal cavities.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N1268ebd2e2b84a5d9c6410c0fa718628
35 N33cada852b9e458d944cf5a4457a006e
36 sg:journal.1018957
37 schema:name Controlling cavity reflectivity with a single quantum dot
38 schema:pagination 857
39 schema:productId N3954bb722a68414091a842ff35b31cf5
40 N4ae68cecf4c8463690f9950653159800
41 N6a0bd06bc7f3455f94fe02f953ca911a
42 N7744d4bec2934cd6919a30fa8f6a224a
43 N9a560110e0754d4a9dade09671da9a7f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024436041
45 https://doi.org/10.1038/nature06234
46 schema:sdDatePublished 2019-04-10T18:31
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N562df08f1c7c49ae9726a890bb7882f6
49 schema:url https://www.nature.com/articles/nature06234
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1268ebd2e2b84a5d9c6410c0fa718628 schema:issueNumber 7171
54 rdf:type schema:PublicationIssue
55 N33cada852b9e458d944cf5a4457a006e schema:volumeNumber 450
56 rdf:type schema:PublicationVolume
57 N3954bb722a68414091a842ff35b31cf5 schema:name dimensions_id
58 schema:value pub.1024436041
59 rdf:type schema:PropertyValue
60 N46083e0eeecd41f18121e9aa15301416 rdf:first sg:person.01310355373.78
61 rdf:rest Nb2fdca1601b842a29d29b8bc306424c9
62 N4ae68cecf4c8463690f9950653159800 schema:name nlm_unique_id
63 schema:value 0410462
64 rdf:type schema:PropertyValue
65 N562df08f1c7c49ae9726a890bb7882f6 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N6a0bd06bc7f3455f94fe02f953ca911a schema:name doi
68 schema:value 10.1038/nature06234
69 rdf:type schema:PropertyValue
70 N7352a37465654364b4ec5ae7b25d405a rdf:first sg:person.010713557153.52
71 rdf:rest N46083e0eeecd41f18121e9aa15301416
72 N7744d4bec2934cd6919a30fa8f6a224a schema:name readcube_id
73 schema:value 746a2f956832e2d3c25a33ee13a68e92f80bf878a23214beef0ed1effa6ed16d
74 rdf:type schema:PropertyValue
75 N79a1feaa65ae447a9ed20d947abd5848 rdf:first sg:person.0744340725.14
76 rdf:rest rdf:nil
77 N995c458dd2864380b2f50c7e6fdf1c55 rdf:first sg:person.011511137553.48
78 rdf:rest Nd1b1c1e109a44f0e8511be8379706dff
79 N9a560110e0754d4a9dade09671da9a7f schema:name pubmed_id
80 schema:value 18064008
81 rdf:type schema:PropertyValue
82 Nb2fdca1601b842a29d29b8bc306424c9 rdf:first sg:person.015412576605.70
83 rdf:rest N79a1feaa65ae447a9ed20d947abd5848
84 Nd1b1c1e109a44f0e8511be8379706dff rdf:first sg:person.01171504023.43
85 rdf:rest N7352a37465654364b4ec5ae7b25d405a
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
90 schema:name Optical Physics
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.010713557153.52 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
97 schema:familyName Fushman
98 schema:givenName Ilya
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713557153.52
100 rdf:type schema:Person
101 sg:person.011511137553.48 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
102 schema:familyName Englund
103 schema:givenName Dirk
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511137553.48
105 rdf:type schema:Person
106 sg:person.01171504023.43 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
107 schema:familyName Faraon
108 schema:givenName Andrei
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171504023.43
110 rdf:type schema:Person
111 sg:person.01310355373.78 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
112 schema:familyName Stoltz
113 schema:givenName Nick
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310355373.78
115 rdf:type schema:Person
116 sg:person.015412576605.70 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
117 schema:familyName Petroff
118 schema:givenName Pierre
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412576605.70
120 rdf:type schema:Person
121 sg:person.0744340725.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
122 schema:familyName Vučković
123 schema:givenName Jelena
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744340725.14
125 rdf:type schema:Person
126 sg:pub.10.1038/22275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010070547
127 https://doi.org/10.1038/22275
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature02063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035840991
130 https://doi.org/10.1038/nature02063
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature03119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101061
133 https://doi.org/10.1038/nature03119
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature03804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008909605
136 https://doi.org/10.1038/nature03804
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature05461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023745423
139 https://doi.org/10.1038/nature05461
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature05586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558789
142 https://doi.org/10.1038/nature05586
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.physe.2005.12.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448820
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.2472534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687730
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.2742789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647728
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.2743750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019738819
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1367-2630/8/9/184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003023283
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/1464-4266/1/4/312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059140984
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreva.32.2287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473799
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreva.72.052330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051684955
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.75.053823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023372
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.78.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879203
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.80.4157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817429
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.83.4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820356
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.83.5166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820503
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.92.127902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053252412
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.95.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000461663
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.96.153601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033554841
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/josab.18.001911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065169954
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1364/oe.15.005550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018358501
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
181 schema:name Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
184 schema:name Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...