Crystal structure of the MgtE Mg2+ transporter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-08-30

AUTHORS

Motoyuki Hattori, Yoshiki Tanaka, Shuya Fukai, Ryuichiro Ishitani, Osamu Nureki

ABSTRACT

The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport. Recently the crystal structures of the CorA Mg2+ transporter were reported. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 A resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 A and 3.9 A resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-beta-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the 'connecting helices', which connect the cystathionine-beta-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined. More... »

PAGES

1072

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06093

DOI

http://dx.doi.org/10.1038/nature06093

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043212915

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17700703


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antiporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dimerization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homeostasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnesium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Quaternary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Static Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thermus thermophilus", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Biological Information, Graduate School of Bioscience and Biotechnology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "Motoyuki", 
        "id": "sg:person.0720121745.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720121745.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biological Information, Graduate School of Bioscience and Biotechnology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Yoshiki", 
        "id": "sg:person.01367623672.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367623672.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukai", 
        "givenName": "Shuya", 
        "id": "sg:person.01135145566.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135145566.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Biological Information, Graduate School of Bioscience and Biotechnology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishitani", 
        "givenName": "Ryuichiro", 
        "id": "sg:person.01221724404.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221724404.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Department of Biological Information, Graduate School of Bioscience and Biotechnology,", 
            "SORST, JST, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nureki", 
        "givenName": "Osamu", 
        "id": "sg:person.01043223704.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043223704.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bbrc.2005.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000243405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0603871103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002845602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0603871103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002845602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00261.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004833715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855951", 
          "https://doi.org/10.1038/nature04642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855951", 
          "https://doi.org/10.1038/nature04642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855951", 
          "https://doi.org/10.1038/nature04642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(97)76066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004907170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1744309107032332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009807169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.274.29.20438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009823303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1744309107032344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013860753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767390010224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014210169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014299218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444995008754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016226289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444998003254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019779527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889898010504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023709097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.emboj.7601269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025399747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444994003112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025573949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m608356200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029021283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340110407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033493086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340110407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033493086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20060673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20060673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m502890200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036204135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m502890200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036204135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(03)01030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036243552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(03)01030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036243552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016078832697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036977527", 
          "https://doi.org/10.1023/a:1016078832697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044949819", 
          "https://doi.org/10.1186/1471-2105-7-316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00282.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046010960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00282.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046010960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1085028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1127121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5424.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062565756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.168.3.1444-1450.1986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062715385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.18.5350-5354.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.177.5.1233-1238.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062724552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/2039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070914337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080691888", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08-30", 
    "datePublishedReg": "2007-08-30", 
    "description": "The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport. Recently the crystal structures of the CorA Mg2+ transporter were reported. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 A resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 A and 3.9 A resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-beta-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the 'connecting helices', which connect the cystathionine-beta-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature06093", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7157", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "448"
      }
    ], 
    "name": "Crystal structure of the MgtE Mg2+ transporter", 
    "pagination": "1072", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdd67e7f93703ff6fa0ee5e6ca16d19fbb46ad9827d12cc92e77ffa552f71ab4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17700703"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06093"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043212915"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06093", 
      "https://app.dimensions.ai/details/publication/pub.1043212915"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature06093"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06093'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06093'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06093'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06093'


 

This table displays all metadata directly associated to this object as RDF triples.

254 TRIPLES      21 PREDICATES      72 URIs      33 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06093 schema:about N0786fa3e4bb140ddb1b53d56360a3bdb
2 N0ae01bea485c4a8b8a8f78f12d91d3e1
3 N1269e5cca8ce4a01afc2799a767c0100
4 N1fd4d44807bb4595b53706034fe0473c
5 N38ae77ce1a7b42218f1ae799067d3435
6 N3acd487ef14b4e3794c951fed71d3ab1
7 N3d018feb8b8c4291a52030fa3aec35b2
8 N55bda21d30694413afe882b8d9362aeb
9 N5f7b41192c954391a2ac67912611a4fb
10 N6ea88d5b67e24289ac9c094cc17655f2
11 N6ed327ec90854b45ad6f4d297e829819
12 N73f26b55418042d19ca8f1b45ed7a414
13 N8a4726a1518f453baeeff105827cb9ae
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Na396fbecd5454bd6a876e8a4c3d71f37
17 schema:citation sg:pub.10.1023/a:1016078832697
18 sg:pub.10.1038/nature04642
19 sg:pub.10.1186/1471-2105-7-316
20 https://app.dimensions.ai/details/publication/pub.1080691888
21 https://doi.org/10.1002/prot.1073
22 https://doi.org/10.1002/prot.340110407
23 https://doi.org/10.1016/j.bbrc.2005.03.037
24 https://doi.org/10.1016/s0006-291x(03)01030-1
25 https://doi.org/10.1016/s0076-6879(97)76066-x
26 https://doi.org/10.1038/sj.emboj.7601269
27 https://doi.org/10.1042/bj20060673
28 https://doi.org/10.1073/pnas.0603871103
29 https://doi.org/10.1074/jbc.274.29.20438
30 https://doi.org/10.1074/jbc.m502890200
31 https://doi.org/10.1074/jbc.m608356200
32 https://doi.org/10.1107/s0021889898010504
33 https://doi.org/10.1107/s0108767390010224
34 https://doi.org/10.1107/s0907444994003112
35 https://doi.org/10.1107/s0907444995008754
36 https://doi.org/10.1107/s0907444998003254
37 https://doi.org/10.1107/s1744309107032332
38 https://doi.org/10.1107/s1744309107032344
39 https://doi.org/10.1126/science.1085028
40 https://doi.org/10.1126/science.1127121
41 https://doi.org/10.1126/science.285.5424.100
42 https://doi.org/10.1128/jb.168.3.1444-1450.1986
43 https://doi.org/10.1128/jb.177.18.5350-5354.1995
44 https://doi.org/10.1128/jb.177.5.1233-1238.1995
45 https://doi.org/10.1152/ajpcell.00282.2005
46 https://doi.org/10.1152/physiolgenomics.00261.2004
47 https://doi.org/10.2741/2039
48 schema:datePublished 2007-08-30
49 schema:datePublishedReg 2007-08-30
50 schema:description The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport. Recently the crystal structures of the CorA Mg2+ transporter were reported. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 A resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 A and 3.9 A resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-beta-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the 'connecting helices', which connect the cystathionine-beta-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf Ncafe5ad25e1a4ab9a186bdc9c04d488f
55 Nd12c9f5c2c7d4b2b8f452bff4df41184
56 sg:journal.1018957
57 schema:name Crystal structure of the MgtE Mg2+ transporter
58 schema:pagination 1072
59 schema:productId N066166385b9e4ece8db68131790ec664
60 N416b91f4045740c690fbd344d98990b2
61 Nba1dc1d8bd4e4ab0a3ec32ded18ae14c
62 Nbe143095e4224e7d835d262b2562268a
63 Nd54c5c6853f64b27bfa2f1889a418fa9
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043212915
65 https://doi.org/10.1038/nature06093
66 schema:sdDatePublished 2019-04-10T21:25
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nbadcac435539479a85a3d92b359f84e2
69 schema:url https://www.nature.com/articles/nature06093
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N066166385b9e4ece8db68131790ec664 schema:name nlm_unique_id
74 schema:value 0410462
75 rdf:type schema:PropertyValue
76 N0786fa3e4bb140ddb1b53d56360a3bdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Bacterial Proteins
78 rdf:type schema:DefinedTerm
79 N09ab2ba04f544512abc12557768de769 rdf:first sg:person.01367623672.34
80 rdf:rest Ncebe25dcf5d649d888c14cedf764faaa
81 N0ae01bea485c4a8b8a8f78f12d91d3e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Binding Sites
83 rdf:type schema:DefinedTerm
84 N1269e5cca8ce4a01afc2799a767c0100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Dimerization
86 rdf:type schema:DefinedTerm
87 N1fd4d44807bb4595b53706034fe0473c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Magnesium
89 rdf:type schema:DefinedTerm
90 N38ae77ce1a7b42218f1ae799067d3435 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Models, Biological
92 rdf:type schema:DefinedTerm
93 N3acd487ef14b4e3794c951fed71d3ab1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Antiporters
95 rdf:type schema:DefinedTerm
96 N3ba22995677d4a2896928a94f65c12c9 schema:name Department of Biological Information, Graduate School of Bioscience and Biotechnology,
97 rdf:type schema:Organization
98 N3d018feb8b8c4291a52030fa3aec35b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Homeostasis
100 rdf:type schema:DefinedTerm
101 N416b91f4045740c690fbd344d98990b2 schema:name readcube_id
102 schema:value cdd67e7f93703ff6fa0ee5e6ca16d19fbb46ad9827d12cc92e77ffa552f71ab4
103 rdf:type schema:PropertyValue
104 N55bda21d30694413afe882b8d9362aeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Static Electricity
106 rdf:type schema:DefinedTerm
107 N593f57b84c154d8695d1679940b1dbb1 schema:name Department of Biological Information, Graduate School of Bioscience and Biotechnology,
108 rdf:type schema:Organization
109 N5f7b41192c954391a2ac67912611a4fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Crystallography, X-Ray
111 rdf:type schema:DefinedTerm
112 N656c086e27d84d4898b45fa9077133b6 schema:name Department of Biological Information, Graduate School of Bioscience and Biotechnology,
113 rdf:type schema:Organization
114 N6ea88d5b67e24289ac9c094cc17655f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Thermus thermophilus
116 rdf:type schema:DefinedTerm
117 N6ed327ec90854b45ad6f4d297e829819 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Protein Structure, Tertiary
119 rdf:type schema:DefinedTerm
120 N709862b9108a4eafa5b538bc55bd4406 rdf:first sg:person.01221724404.09
121 rdf:rest Ne94e646be87b40e3a62e580947e64bc8
122 N73f26b55418042d19ca8f1b45ed7a414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Models, Molecular
124 rdf:type schema:DefinedTerm
125 N8a4726a1518f453baeeff105827cb9ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Protein Structure, Quaternary
127 rdf:type schema:DefinedTerm
128 Na396fbecd5454bd6a876e8a4c3d71f37 rdf:first sg:person.0720121745.42
129 rdf:rest N09ab2ba04f544512abc12557768de769
130 Nba1dc1d8bd4e4ab0a3ec32ded18ae14c schema:name dimensions_id
131 schema:value pub.1043212915
132 rdf:type schema:PropertyValue
133 Nbadcac435539479a85a3d92b359f84e2 schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nbe143095e4224e7d835d262b2562268a schema:name pubmed_id
136 schema:value 17700703
137 rdf:type schema:PropertyValue
138 Ncafe5ad25e1a4ab9a186bdc9c04d488f schema:volumeNumber 448
139 rdf:type schema:PublicationVolume
140 Ncebe25dcf5d649d888c14cedf764faaa rdf:first sg:person.01135145566.92
141 rdf:rest N709862b9108a4eafa5b538bc55bd4406
142 Nd12c9f5c2c7d4b2b8f452bff4df41184 schema:issueNumber 7157
143 rdf:type schema:PublicationIssue
144 Nd54c5c6853f64b27bfa2f1889a418fa9 schema:name doi
145 schema:value 10.1038/nature06093
146 rdf:type schema:PropertyValue
147 Ne94e646be87b40e3a62e580947e64bc8 rdf:first sg:person.01043223704.15
148 rdf:rest rdf:nil
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biochemistry and Cell Biology
154 rdf:type schema:DefinedTerm
155 sg:journal.1018957 schema:issn 0090-0028
156 1476-4687
157 schema:name Nature
158 rdf:type schema:Periodical
159 sg:person.01043223704.15 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
160 schema:familyName Nureki
161 schema:givenName Osamu
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043223704.15
163 rdf:type schema:Person
164 sg:person.01135145566.92 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
165 schema:familyName Fukai
166 schema:givenName Shuya
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135145566.92
168 rdf:type schema:Person
169 sg:person.01221724404.09 schema:affiliation N3ba22995677d4a2896928a94f65c12c9
170 schema:familyName Ishitani
171 schema:givenName Ryuichiro
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221724404.09
173 rdf:type schema:Person
174 sg:person.01367623672.34 schema:affiliation N593f57b84c154d8695d1679940b1dbb1
175 schema:familyName Tanaka
176 schema:givenName Yoshiki
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367623672.34
178 rdf:type schema:Person
179 sg:person.0720121745.42 schema:affiliation N656c086e27d84d4898b45fa9077133b6
180 schema:familyName Hattori
181 schema:givenName Motoyuki
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720121745.42
183 rdf:type schema:Person
184 sg:pub.10.1023/a:1016078832697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977527
185 https://doi.org/10.1023/a:1016078832697
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature04642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855951
188 https://doi.org/10.1038/nature04642
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2105-7-316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044949819
191 https://doi.org/10.1186/1471-2105-7-316
192 rdf:type schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1080691888 schema:CreativeWork
194 https://doi.org/10.1002/prot.1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014299218
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/prot.340110407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493086
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.bbrc.2005.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243405
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0006-291x(03)01030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036243552
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0076-6879(97)76066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004907170
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1038/sj.emboj.7601269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025399747
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1042/bj20060673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034248848
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1073/pnas.0603871103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002845602
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1074/jbc.274.29.20438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009823303
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1074/jbc.m502890200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036204135
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1074/jbc.m608356200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029021283
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1107/s0021889898010504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023709097
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1107/s0108767390010224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014210169
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1107/s0907444994003112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573949
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1107/s0907444995008754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016226289
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1107/s0907444998003254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019779527
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1107/s1744309107032332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009807169
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1107/s1744309107032344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013860753
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1085028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448160
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1127121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453748
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.285.5424.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565756
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1128/jb.168.3.1444-1450.1986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062715385
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1128/jb.177.18.5350-5354.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724131
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1128/jb.177.5.1233-1238.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724552
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1152/ajpcell.00282.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010960
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1152/physiolgenomics.00261.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004833715
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2741/2039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070914337
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
249 schema:name Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
252 schema:name Department of Biological Information, Graduate School of Bioscience and Biotechnology,
253 SORST, JST, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
254 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...