Differential Notch signalling distinguishes neural stem cells from intermediate progenitors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-08-26

AUTHORS

Ken-ichi Mizutani, Keejung Yoon, Louis Dang, Akinori Tokunaga, Nicholas Gaiano

ABSTRACT

Stem cells go up a NotchThe existence of different proliferative cell types in most stem cell systems is widely accepted, but the differences between these stem cells and restricted progenitor subsets are poorly understood. Now a team working at Johns Hopkins has discovered how two distinct cell populations in the developing mouse brain — 'true' neural stem cells and similar but less potent progenitors — are distinguished. The stem cells undergo stepwise maturation, gradually shedding 'stem cell' properties. The first step turns stem cells into 'progenitors' by dictating how signals downstream of Notch, a protein that regulates stem cells in many tissues, are transmitted. Then the two cell types diverge and the key factor here is whether a Notch signalling protein called CBF1 is active or not. CBF1 signalling plays the same role in blood stem cells, so it may be be a general 'switch' distinguishing stem cells from progenitors. More... »

PAGES

351-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature06090

DOI

http://dx.doi.org/10.1038/nature06090

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020677186

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17721509


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Basic Helix-Loop-Helix Leucine Zipper Transcription Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Green Fluorescent Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoglobulin J Recombination Signal Sequence-Binding Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Notch", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Telencephalon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology,", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Cell Engineering,", 
            "Department of Neurology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizutani", 
        "givenName": "Ken-ichi", 
        "id": "sg:person.01051011136.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051011136.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Tongil-Lo 194, Eunpyung-Gu, Seoul, 122-701, Korea.", 
          "id": "http://www.grid.ac/institutes/grid.415482.e", 
          "name": [
            "Institute for Cell Engineering,", 
            "Department of Neurology,", 
            "Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Tongil-Lo 194, Eunpyung-Gu, Seoul, 122-701, Korea."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Keejung", 
        "id": "sg:person.01221514013.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221514013.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroscience, and", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Cell Engineering,", 
            "Department of Neuroscience, and"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dang", 
        "givenName": "Louis", 
        "id": "sg:person.01032133624.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032133624.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology,", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute for Cell Engineering,", 
            "Department of Neurology,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokunaga", 
        "givenName": "Akinori", 
        "id": "sg:person.012457603221.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012457603221.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Institute for Cell Engineering,", 
            "Department of Neurology,", 
            "Department of Neuroscience, and", 
            "Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaiano", 
        "givenName": "Nicholas", 
        "id": "sg:person.01050401001.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050401001.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn1473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025570503", 
          "https://doi.org/10.1038/nn1473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018424763", 
          "https://doi.org/10.1038/ni1164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35078107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028423924", 
          "https://doi.org/10.1038/35078107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006282544", 
          "https://doi.org/10.1038/nn1475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009360999", 
          "https://doi.org/10.1038/nature05571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029692486", 
          "https://doi.org/10.1038/35102174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01980211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000627534", 
          "https://doi.org/10.1007/bf01980211"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08-26", 
    "datePublishedReg": "2007-08-26", 
    "description": "Stem cells go up a NotchThe existence of different proliferative cell types in most stem cell systems is widely accepted, but the differences between these stem cells and restricted progenitor subsets are poorly understood. Now a team working at Johns Hopkins has discovered how two distinct cell populations in the developing mouse brain \u2014 'true' neural stem cells and similar but less potent progenitors \u2014 are distinguished. The stem cells undergo stepwise maturation, gradually shedding 'stem cell' properties. The first step turns stem cells into 'progenitors' by dictating how signals downstream of Notch, a protein that regulates stem cells in many tissues, are transmitted. Then the two cell types diverge and the key factor here is whether a Notch signalling protein called CBF1 is active or not. CBF1 signalling plays the same role in blood stem cells, so it may be be a general 'switch' distinguishing stem cells from progenitors.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature06090", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7160", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "449"
      }
    ], 
    "keywords": [
      "stem cells", 
      "neural stem cells", 
      "stem cell system", 
      "proliferative cell types", 
      "distinct cell populations", 
      "potent progenitors", 
      "stepwise maturation", 
      "intermediate progenitors", 
      "progenitor subsets", 
      "cell types", 
      "CBF1", 
      "progenitors", 
      "cell populations", 
      "protein", 
      "cell system", 
      "cells", 
      "mouse brain", 
      "Notch", 
      "maturation", 
      "first step", 
      "same role", 
      "tissue", 
      "key factors", 
      "blood stem cells", 
      "role", 
      "population", 
      "switch", 
      "subset", 
      "signals", 
      "brain", 
      "diverges", 
      "factors", 
      "step", 
      "types", 
      "differences", 
      "existence", 
      "Hopkins", 
      "system", 
      "properties", 
      "Johns Hopkins", 
      "team"
    ], 
    "name": "Differential Notch signalling distinguishes neural stem cells from intermediate progenitors", 
    "pagination": "351-355", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020677186"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature06090"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17721509"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature06090", 
      "https://app.dimensions.ai/details/publication/pub.1020677186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_439.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature06090"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature06090'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature06090'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature06090'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature06090'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      84 URIs      69 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature06090 schema:about N1224f01bfa8d460c9a970a8fc07550dd
2 N26033cbb00e5489ab8d6adeb4317896f
3 N2c995840397e4fae8b8a8d15823a4a57
4 N3ae0e5184a0643398373d98f276a5889
5 N3f662c64d5ff49df98e7ff7e5308a32b
6 N5613769fd84e4e27b4484d51ee47c24c
7 N6513d6f031374784958c54bc7a202d71
8 N6e8c5773b9e94eea9d86108c1a70b5c8
9 N80dfae0847a14788a47473ebbbf966e4
10 Nb09bb7b4bdb947d89b857cc8b6d54eff
11 Nc0c01c593efe490783780b0841dae2a6
12 anzsrc-for:06
13 anzsrc-for:0601
14 schema:author N7fdaaea8837843219317117c1d5d64c5
15 schema:citation sg:pub.10.1007/bf01980211
16 sg:pub.10.1038/35078107
17 sg:pub.10.1038/35102174
18 sg:pub.10.1038/nature05571
19 sg:pub.10.1038/ni1164
20 sg:pub.10.1038/nn1473
21 sg:pub.10.1038/nn1475
22 schema:datePublished 2007-08-26
23 schema:datePublishedReg 2007-08-26
24 schema:description Stem cells go up a NotchThe existence of different proliferative cell types in most stem cell systems is widely accepted, but the differences between these stem cells and restricted progenitor subsets are poorly understood. Now a team working at Johns Hopkins has discovered how two distinct cell populations in the developing mouse brain — 'true' neural stem cells and similar but less potent progenitors — are distinguished. The stem cells undergo stepwise maturation, gradually shedding 'stem cell' properties. The first step turns stem cells into 'progenitors' by dictating how signals downstream of Notch, a protein that regulates stem cells in many tissues, are transmitted. Then the two cell types diverge and the key factor here is whether a Notch signalling protein called CBF1 is active or not. CBF1 signalling plays the same role in blood stem cells, so it may be be a general 'switch' distinguishing stem cells from progenitors.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N27bf61307c3e4af889dfbc9337d5e181
28 Nc9fd76138d3b4f459df4385eef292f6d
29 sg:journal.1018957
30 schema:keywords CBF1
31 Hopkins
32 Johns Hopkins
33 Notch
34 blood stem cells
35 brain
36 cell populations
37 cell system
38 cell types
39 cells
40 differences
41 distinct cell populations
42 diverges
43 existence
44 factors
45 first step
46 intermediate progenitors
47 key factors
48 maturation
49 mouse brain
50 neural stem cells
51 population
52 potent progenitors
53 progenitor subsets
54 progenitors
55 proliferative cell types
56 properties
57 protein
58 role
59 same role
60 signals
61 stem cell system
62 stem cells
63 step
64 stepwise maturation
65 subset
66 switch
67 system
68 team
69 tissue
70 types
71 schema:name Differential Notch signalling distinguishes neural stem cells from intermediate progenitors
72 schema:pagination 351-355
73 schema:productId N3421d15f33384d82b3add02631772e8e
74 N6743ac1ed8e7403ea91a149aaeb04ca9
75 Ne9d51a0390124286b6dc3fd5bad9052b
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020677186
77 https://doi.org/10.1038/nature06090
78 schema:sdDatePublished 2022-10-01T06:34
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N6b13968256c546798be5d33b5b892bc1
81 schema:url https://doi.org/10.1038/nature06090
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N027a3fa345ea4283b29d23556ad6b776 rdf:first sg:person.012457603221.37
86 rdf:rest N753bacf9e42441b2b1dd39b78f65d17a
87 N1224f01bfa8d460c9a970a8fc07550dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Neurons
89 rdf:type schema:DefinedTerm
90 N26033cbb00e5489ab8d6adeb4317896f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Stem Cells
92 rdf:type schema:DefinedTerm
93 N27bf61307c3e4af889dfbc9337d5e181 schema:volumeNumber 449
94 rdf:type schema:PublicationVolume
95 N2c995840397e4fae8b8a8d15823a4a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Telencephalon
97 rdf:type schema:DefinedTerm
98 N3421d15f33384d82b3add02631772e8e schema:name pubmed_id
99 schema:value 17721509
100 rdf:type schema:PropertyValue
101 N3ae0e5184a0643398373d98f276a5889 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Immunoglobulin J Recombination Signal Sequence-Binding Protein
103 rdf:type schema:DefinedTerm
104 N3f662c64d5ff49df98e7ff7e5308a32b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Animals
106 rdf:type schema:DefinedTerm
107 N5613769fd84e4e27b4484d51ee47c24c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cells, Cultured
109 rdf:type schema:DefinedTerm
110 N6513d6f031374784958c54bc7a202d71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Signal Transduction
112 rdf:type schema:DefinedTerm
113 N659b285b270248e5875a0bc7b93b238f rdf:first sg:person.01221514013.23
114 rdf:rest Ncbcd5e66f71d4e09901583db1ed94495
115 N6743ac1ed8e7403ea91a149aaeb04ca9 schema:name dimensions_id
116 schema:value pub.1020677186
117 rdf:type schema:PropertyValue
118 N6b13968256c546798be5d33b5b892bc1 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N6e8c5773b9e94eea9d86108c1a70b5c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
122 rdf:type schema:DefinedTerm
123 N753bacf9e42441b2b1dd39b78f65d17a rdf:first sg:person.01050401001.88
124 rdf:rest rdf:nil
125 N7fdaaea8837843219317117c1d5d64c5 rdf:first sg:person.01051011136.25
126 rdf:rest N659b285b270248e5875a0bc7b93b238f
127 N80dfae0847a14788a47473ebbbf966e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Green Fluorescent Proteins
129 rdf:type schema:DefinedTerm
130 Nb09bb7b4bdb947d89b857cc8b6d54eff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Receptors, Notch
132 rdf:type schema:DefinedTerm
133 Nc0c01c593efe490783780b0841dae2a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Mice
135 rdf:type schema:DefinedTerm
136 Nc9fd76138d3b4f459df4385eef292f6d schema:issueNumber 7160
137 rdf:type schema:PublicationIssue
138 Ncbcd5e66f71d4e09901583db1ed94495 rdf:first sg:person.01032133624.13
139 rdf:rest N027a3fa345ea4283b29d23556ad6b776
140 Ne9d51a0390124286b6dc3fd5bad9052b schema:name doi
141 schema:value 10.1038/nature06090
142 rdf:type schema:PropertyValue
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biochemistry and Cell Biology
148 rdf:type schema:DefinedTerm
149 sg:journal.1018957 schema:issn 0028-0836
150 1476-4687
151 schema:name Nature
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01032133624.13 schema:affiliation grid-institutes:None
155 schema:familyName Dang
156 schema:givenName Louis
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032133624.13
158 rdf:type schema:Person
159 sg:person.01050401001.88 schema:affiliation grid-institutes:grid.21107.35
160 schema:familyName Gaiano
161 schema:givenName Nicholas
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050401001.88
163 rdf:type schema:Person
164 sg:person.01051011136.25 schema:affiliation grid-institutes:None
165 schema:familyName Mizutani
166 schema:givenName Ken-ichi
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051011136.25
168 rdf:type schema:Person
169 sg:person.01221514013.23 schema:affiliation grid-institutes:grid.415482.e
170 schema:familyName Yoon
171 schema:givenName Keejung
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221514013.23
173 rdf:type schema:Person
174 sg:person.012457603221.37 schema:affiliation grid-institutes:None
175 schema:familyName Tokunaga
176 schema:givenName Akinori
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012457603221.37
178 rdf:type schema:Person
179 sg:pub.10.1007/bf01980211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000627534
180 https://doi.org/10.1007/bf01980211
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/35078107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028423924
183 https://doi.org/10.1038/35078107
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/35102174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029692486
186 https://doi.org/10.1038/35102174
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature05571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009360999
189 https://doi.org/10.1038/nature05571
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/ni1164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018424763
192 https://doi.org/10.1038/ni1164
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nn1473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025570503
195 https://doi.org/10.1038/nn1473
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nn1475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006282544
198 https://doi.org/10.1038/nn1475
199 rdf:type schema:CreativeWork
200 grid-institutes:None schema:alternateName Department of Neurology,
201 Department of Neuroscience, and
202 schema:name Department of Neurology,
203 Department of Neuroscience, and
204 Institute for Cell Engineering,
205 rdf:type schema:Organization
206 grid-institutes:grid.21107.35 schema:alternateName Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
207 schema:name Department of Neurology,
208 Department of Neuroscience, and
209 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
210 Institute for Cell Engineering,
211 rdf:type schema:Organization
212 grid-institutes:grid.415482.e schema:alternateName Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Tongil-Lo 194, Eunpyung-Gu, Seoul, 122-701, Korea.
213 schema:name Department of Neurology,
214 Institute for Cell Engineering,
215 Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Tongil-Lo 194, Eunpyung-Gu, Seoul, 122-701, Korea.
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...