Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07

AUTHORS

Yuriy Román-Leshkov, Christopher J. Barrett, Zhen Y. Liu, James A. Dumesic

ABSTRACT

Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum. More... »

PAGES

982

Journal

TITLE

Nature

ISSUE

7147

VOLUME

447

Author Affiliations

Related Patents

  • Chemical Transformation Of Lignocellulosic Biomass Into Fuels And Chemicals
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde Derivatives
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • One-Step Catalytic Conversion Of Biomass-Derived Carbohydrates To Liquid Fuels
  • Conversion And Purification Of Biomass
  • Process For Liquefying A Cellulosic Material And Its Products
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde And Derivatives
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Method And Apparatus For Producing A Fuel From A Biomass Or Bio-Oil
  • Liquid Fuel Compositions
  • Biofuels Via Hydrogenolysis-Condensation
  • Liquid Fuel Compositions
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Method For Converting Biomass Into Liquid Fuel
  • 5-Hydroxymethylfurfural Production Using A Multi-Fluorinated Alcohol Compound
  • Process To Produce Terephthalic Acid
  • Biofuels Via Hydrogenolysis-Condensation
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Liquid Fuel Compositions
  • Process For Preparing Fuel Compositions
  • 5-(Substituted Methyl) 2-Methylfuran
  • Process For Preparing Fuel Compositions
  • Lignocellulose Conversion Processes And Products
  • Method For Producing Liquid Hydrocarbon Fuels Directly From Lignocellulosic Biomass
  • Preparation Of Caprolactone, Caprolactam, 2,5-Tetrahydrofuran-Dimethanol, 1,6-Hexanediol Or 1,2,6-Hexanetriol From 5-Hydroxymethyl-2-Furfuraldehyde
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde And Derivatives
  • Processes And Catalysts For Conversion Of 2,5-Dimethylfuran Derivatives To Terephthalate
  • A Method Of Producing Hydroxymethylfurfural
  • Methods For Preparing Alkylfurans
  • Direct Aqueous Phase Reforming And Aldol Condensation To Form Bio-Based Fuels
  • Direct Aqueous Phase Reforming Of Bio-Based Feedstocks
  • Methods Of Producing Alkylfurans
  • Process For Catalytic Hydrodesoxygenation Of Furane Derivatives And/Or Pyrolysis Oils, The Catalyst And The Process Of Making Thereof.
  • Biofuels Via Hydrogenolysis And Dehydrogenation-Condensation
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Method For The Production Of Aliphatic Alcohols And/Or Their Ethers, In Particular, 1-Octanol
  • Coupled Electrochemical Method For Reduction Of Polyols To Hydrocarbons
  • Improved 5 - Hydroxy Furfural - Production
  • Methods Of Producing Alkylfurans
  • Liquid Fuel Compositions
  • Method For Selectively Preparing 5-Hydroxymethylfurfual (Hmf) From Biomass In Polar Aprotic Solvents
  • Methods And Systems For Processing Sugar Mixtures And Resultant Compositions
  • One-Step Catalytic Conversion Of Biomass-Derived Carbohydrates To Liquid Fuels
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Sugar Mixtures And Methods For Production And Use Thereof
  • Sugar Mixtures And Methods For Production And Use Thereof
  • Programmed Degradation Of Polymers Derived From Biomass
  • Direct Aqueous Phase Reforming Of Bio-Based Feedstocks
  • Fuel Composition
  • Process Of Production Of 2,5-Dimethylphenol
  • 5-Substituted 2-(Alkoxymethyl)Furans
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature05923

    DOI

    http://dx.doi.org/10.1038/nature05923

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013696134

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17581580


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bioelectric Energy Sources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbohydrate Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Catalysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conservation of Energy Resources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ethanol", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fructose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Furans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phase Transition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transportation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rom\u00e1n-Leshkov", 
            "givenName": "Yuriy", 
            "id": "sg:person.01327446603.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327446603.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barrett", 
            "givenName": "Christopher J.", 
            "id": "sg:person.01306737320.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306737320.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhen Y.", 
            "id": "sg:person.0740452223.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740452223.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumesic", 
            "givenName": "James A.", 
            "id": "sg:person.01233363143.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363143.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:toca.0000013537.13540.0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008874837", 
              "https://doi.org/10.1023/b:toca.0000013537.13540.0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1114736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009106987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019090520407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011556211", 
              "https://doi.org/10.1023/a:1019090520407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.5030320730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018017925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.5030320730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018017925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.503310119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022026499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.503310119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022026499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19860380308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027382523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2003.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029716563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9517(76)90257-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033315348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcata.2005.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034869011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19900420808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036904509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(99)00231-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038289644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9517(73)90234-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045820172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-860x(00)00854-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049513331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(78)90292-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049775495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(78)90292-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049775495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/i360037a011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055530383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je60031a007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055885907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jo01102a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056004325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1126337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062453694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079810421", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-07", 
        "datePublishedReg": "2007-07-01", 
        "description": "Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature05923", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7147", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "447"
          }
        ], 
        "name": "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates", 
        "pagination": "982", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "413eeadea93cf728d167ed74c59536d4ef2be065f13c7ecd2ed5f31504f0901c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17581580"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature05923"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013696134"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature05923", 
          "https://app.dimensions.ai/details/publication/pub.1013696134"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature05923"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05923'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      60 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature05923 schema:about N29c8714eed73416ba64efb2c001db4fb
    2 N2e9bc8c32ac741dbbb7ccba81bcb21bb
    3 N5b4f93cff4684d56b192c23244107d05
    4 N689914c9bb484b5693a79c2add71aefd
    5 N81bfa179aa9d49edbfbcf9ab81ccdf17
    6 N9c93dc9556b64a89927de0da84bade23
    7 Na0fff0d771ed4e73858c0afd127084a3
    8 Nbca8d9098dee4f7f8cdb21c02fd67dd5
    9 Nc76c9ae10db74c898a1c85979a756ae0
    10 Nc7a3e051b4034d6dab8edfdd419f06c2
    11 Nd0d0ab6b736148a9b4e8549c1adf9ffa
    12 Nf475f22410144abc9794d6664c4d9319
    13 anzsrc-for:09
    14 anzsrc-for:0904
    15 schema:author Ne782d52f82994b92a18adac07118770a
    16 schema:citation sg:pub.10.1023/a:1019090520407
    17 sg:pub.10.1023/b:toca.0000013537.13540.0e
    18 https://app.dimensions.ai/details/publication/pub.1079810421
    19 https://doi.org/10.1002/jctb.5030320730
    20 https://doi.org/10.1002/jctb.503310119
    21 https://doi.org/10.1002/star.19860380308
    22 https://doi.org/10.1002/star.19900420808
    23 https://doi.org/10.1016/0021-9517(73)90234-0
    24 https://doi.org/10.1016/0021-9517(76)90257-8
    25 https://doi.org/10.1016/0039-6028(78)90292-3
    26 https://doi.org/10.1016/j.biombioe.2003.07.005
    27 https://doi.org/10.1016/j.molcata.2005.10.003
    28 https://doi.org/10.1016/s0378-3812(99)00231-9
    29 https://doi.org/10.1016/s0926-860x(00)00854-1
    30 https://doi.org/10.1021/i360037a011
    31 https://doi.org/10.1021/je60031a007
    32 https://doi.org/10.1021/jo01102a002
    33 https://doi.org/10.1126/science.1114736
    34 https://doi.org/10.1126/science.1126337
    35 schema:datePublished 2007-07
    36 schema:datePublishedReg 2007-07-01
    37 schema:description Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N9c425367cf0147faa7f0ed3345d82575
    42 Na7267fe3b9494c76a74fb1f9dc0ad63d
    43 sg:journal.1018957
    44 schema:name Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
    45 schema:pagination 982
    46 schema:productId N563b00deac074e3aa5ddc333794f5fca
    47 N7367141f884a4d19b9fab33fe7a4774c
    48 N82021f6478834c7194ef925ed2178d20
    49 Nc3f50b301c1d46da8620281d4272b6f7
    50 Ndce196d162ba4e578a5e611862c4492a
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696134
    52 https://doi.org/10.1038/nature05923
    53 schema:sdDatePublished 2019-04-10T16:28
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N0786c0373eb44e9fbfb77136ed985f41
    56 schema:url https://www.nature.com/articles/nature05923
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N0661d53452564404bf4f814cab552d98 rdf:first sg:person.0740452223.21
    61 rdf:rest N6abb68cd3fc7467abde892a8b6ca3484
    62 N0786c0373eb44e9fbfb77136ed985f41 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N29c8714eed73416ba64efb2c001db4fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Conservation of Energy Resources
    66 rdf:type schema:DefinedTerm
    67 N2e9bc8c32ac741dbbb7ccba81bcb21bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Carbohydrate Metabolism
    69 rdf:type schema:DefinedTerm
    70 N563b00deac074e3aa5ddc333794f5fca schema:name nlm_unique_id
    71 schema:value 0410462
    72 rdf:type schema:PropertyValue
    73 N5b4f93cff4684d56b192c23244107d05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Biomass
    75 rdf:type schema:DefinedTerm
    76 N689914c9bb484b5693a79c2add71aefd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Furans
    78 rdf:type schema:DefinedTerm
    79 N6abb68cd3fc7467abde892a8b6ca3484 rdf:first sg:person.01233363143.71
    80 rdf:rest rdf:nil
    81 N7367141f884a4d19b9fab33fe7a4774c schema:name dimensions_id
    82 schema:value pub.1013696134
    83 rdf:type schema:PropertyValue
    84 N81bfa179aa9d49edbfbcf9ab81ccdf17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Transportation
    86 rdf:type schema:DefinedTerm
    87 N82021f6478834c7194ef925ed2178d20 schema:name doi
    88 schema:value 10.1038/nature05923
    89 rdf:type schema:PropertyValue
    90 N9c425367cf0147faa7f0ed3345d82575 schema:issueNumber 7147
    91 rdf:type schema:PublicationIssue
    92 N9c93dc9556b64a89927de0da84bade23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Phase Transition
    94 rdf:type schema:DefinedTerm
    95 Na0fff0d771ed4e73858c0afd127084a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Fructose
    97 rdf:type schema:DefinedTerm
    98 Na7267fe3b9494c76a74fb1f9dc0ad63d schema:volumeNumber 447
    99 rdf:type schema:PublicationVolume
    100 Nbca8d9098dee4f7f8cdb21c02fd67dd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Ethanol
    102 rdf:type schema:DefinedTerm
    103 Nc3f50b301c1d46da8620281d4272b6f7 schema:name pubmed_id
    104 schema:value 17581580
    105 rdf:type schema:PropertyValue
    106 Nc76c9ae10db74c898a1c85979a756ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Solubility
    108 rdf:type schema:DefinedTerm
    109 Nc7a3e051b4034d6dab8edfdd419f06c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Catalysis
    111 rdf:type schema:DefinedTerm
    112 Nd0d0ab6b736148a9b4e8549c1adf9ffa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Bioelectric Energy Sources
    114 rdf:type schema:DefinedTerm
    115 Ndce196d162ba4e578a5e611862c4492a schema:name readcube_id
    116 schema:value 413eeadea93cf728d167ed74c59536d4ef2be065f13c7ecd2ed5f31504f0901c
    117 rdf:type schema:PropertyValue
    118 Ne782d52f82994b92a18adac07118770a rdf:first sg:person.01327446603.44
    119 rdf:rest Nf177dc4bc3ff4d7aa7d71a5a89610afa
    120 Nf177dc4bc3ff4d7aa7d71a5a89610afa rdf:first sg:person.01306737320.98
    121 rdf:rest N0661d53452564404bf4f814cab552d98
    122 Nf475f22410144abc9794d6664c4d9319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Oxygen
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Chemical Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1018957 schema:issn 0090-0028
    132 1476-4687
    133 schema:name Nature
    134 rdf:type schema:Periodical
    135 sg:person.01233363143.71 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    136 schema:familyName Dumesic
    137 schema:givenName James A.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363143.71
    139 rdf:type schema:Person
    140 sg:person.01306737320.98 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    141 schema:familyName Barrett
    142 schema:givenName Christopher J.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306737320.98
    144 rdf:type schema:Person
    145 sg:person.01327446603.44 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    146 schema:familyName Román-Leshkov
    147 schema:givenName Yuriy
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327446603.44
    149 rdf:type schema:Person
    150 sg:person.0740452223.21 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    151 schema:familyName Liu
    152 schema:givenName Zhen Y.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740452223.21
    154 rdf:type schema:Person
    155 sg:pub.10.1023/a:1019090520407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011556211
    156 https://doi.org/10.1023/a:1019090520407
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1023/b:toca.0000013537.13540.0e schema:sameAs https://app.dimensions.ai/details/publication/pub.1008874837
    159 https://doi.org/10.1023/b:toca.0000013537.13540.0e
    160 rdf:type schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1079810421 schema:CreativeWork
    162 https://doi.org/10.1002/jctb.5030320730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018017925
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/jctb.503310119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022026499
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/star.19860380308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027382523
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1002/star.19900420808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036904509
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/0021-9517(73)90234-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045820172
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/0021-9517(76)90257-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033315348
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/0039-6028(78)90292-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775495
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.biombioe.2003.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029716563
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.molcata.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034869011
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0378-3812(99)00231-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289644
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s0926-860x(00)00854-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049513331
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1021/i360037a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055530383
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1021/je60031a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055885907
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1021/jo01102a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056004325
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1114736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009106987
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.1126337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453694
    193 rdf:type schema:CreativeWork
    194 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    195 schema:name Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...