Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07

AUTHORS

Yuriy Román-Leshkov, Christopher J. Barrett, Zhen Y. Liu, James A. Dumesic

ABSTRACT

Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum. More... »

PAGES

982

Journal

TITLE

Nature

ISSUE

7147

VOLUME

447

Author Affiliations

Related Patents

  • Chemical Transformation Of Lignocellulosic Biomass Into Fuels And Chemicals
  • One-Step Catalytic Conversion Of Biomass-Derived Carbohydrates To Liquid Fuels
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde Derivatives
  • Conversion And Purification Of Biomass
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde And Derivatives
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Biofuels Via Hydrogenolysis-Condensation
  • Liquid Fuel Compositions
  • Method And Apparatus For Producing A Fuel From A Biomass Or Bio-Oil
  • Process For Liquefying A Cellulosic Material And Its Products
  • Liquid Fuel Compositions
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • Synthesis Of Liquid Fuels And Chemicals From Oxygenated Hydrocarbons
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Method For Converting Biomass Into Liquid Fuel
  • 5-Hydroxymethylfurfural Production Using A Multi-Fluorinated Alcohol Compound
  • Process To Produce Terephthalic Acid
  • Biofuels Via Hydrogenolysis-Condensation
  • Method To Produce Water-Soluble Sugars From Biomass Using Solvents Containing Lactones
  • Liquid Fuel Compositions
  • Process For Preparing Fuel Compositions
  • 5-(Substituted Methyl) 2-Methylfuran
  • Process For Preparing Fuel Compositions
  • Lignocellulose Conversion Processes And Products
  • Method For Producing Liquid Hydrocarbon Fuels Directly From Lignocellulosic Biomass
  • Preparation Of Caprolactone, Caprolactam, 2,5-Tetrahydrofuran-Dimethanol, 1,6-Hexanediol Or 1,2,6-Hexanetriol From 5-Hydroxymethyl-2-Furfuraldehyde
  • Processes For The Preparation And Purification Of Hydroxymethylfuraldehyde And Derivatives
  • Processes And Catalysts For Conversion Of 2,5-Dimethylfuran Derivatives To Terephthalate
  • A Method Of Producing Hydroxymethylfurfural
  • Methods For Preparing Alkylfurans
  • Direct Aqueous Phase Reforming And Aldol Condensation To Form Bio-Based Fuels
  • Direct Aqueous Phase Reforming Of Bio-Based Feedstocks
  • Methods Of Producing Alkylfurans
  • Process For Catalytic Hydrodesoxygenation Of Furane Derivatives And/Or Pyrolysis Oils, The Catalyst And The Process Of Making Thereof.
  • Biofuels Via Hydrogenolysis And Dehydrogenation-Condensation
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Method For The Production Of Aliphatic Alcohols And/Or Their Ethers, In Particular, 1-Octanol
  • Coupled Electrochemical Method For Reduction Of Polyols To Hydrocarbons
  • Improved 5 - Hydroxy Furfural - Production
  • Methods Of Producing Alkylfurans
  • Liquid Fuel Compositions
  • Method For Selectively Preparing 5-Hydroxymethylfurfual (Hmf) From Biomass In Polar Aprotic Solvents
  • Methods And Systems For Processing Sugar Mixtures And Resultant Compositions
  • One-Step Catalytic Conversion Of Biomass-Derived Carbohydrates To Liquid Fuels
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Sugar Mixtures And Methods For Production And Use Thereof
  • Sugar Mixtures And Methods For Production And Use Thereof
  • Direct Aqueous Phase Reforming Of Bio-Based Feedstocks
  • Programmed Degradation Of Polymers Derived From Biomass
  • 5-Substituted 2-(Alkoxymethyl)Furans
  • Process Of Production Of 2,5-Dimethylphenol
  • Fuel Composition
  • Carbohydrate Route To Para-Xylene And Terephthalic Acid
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature05923

    DOI

    http://dx.doi.org/10.1038/nature05923

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013696134

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17581580


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bioelectric Energy Sources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomass", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbohydrate Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Catalysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Conservation of Energy Resources", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ethanol", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fructose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Furans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phase Transition", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transportation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rom\u00e1n-Leshkov", 
            "givenName": "Yuriy", 
            "id": "sg:person.01327446603.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327446603.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barrett", 
            "givenName": "Christopher J.", 
            "id": "sg:person.01306737320.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306737320.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhen Y.", 
            "id": "sg:person.0740452223.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740452223.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dumesic", 
            "givenName": "James A.", 
            "id": "sg:person.01233363143.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363143.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:toca.0000013537.13540.0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008874837", 
              "https://doi.org/10.1023/b:toca.0000013537.13540.0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1114736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009106987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019090520407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011556211", 
              "https://doi.org/10.1023/a:1019090520407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.5030320730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018017925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.5030320730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018017925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.503310119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022026499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jctb.503310119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022026499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19860380308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027382523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2003.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029716563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9517(76)90257-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033315348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcata.2005.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034869011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/star.19900420808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036904509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(99)00231-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038289644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9517(73)90234-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045820172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0926-860x(00)00854-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049513331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(78)90292-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049775495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(78)90292-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049775495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/i360037a011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055530383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je60031a007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055885907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jo01102a002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056004325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1126337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062453694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079810421", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-07", 
        "datePublishedReg": "2007-07-01", 
        "description": "Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature05923", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7147", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "447"
          }
        ], 
        "name": "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates", 
        "pagination": "982", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "413eeadea93cf728d167ed74c59536d4ef2be065f13c7ecd2ed5f31504f0901c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17581580"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature05923"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013696134"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature05923", 
          "https://app.dimensions.ai/details/publication/pub.1013696134"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature05923"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05923'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05923'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      60 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature05923 schema:about N13eecafe8d13441f9e0d557d35d1e707
    2 N1cc773f9bfb944e68207ea38ce2fb60b
    3 N23c74b29728b4454a7362176a8c215d4
    4 N323080b5e8714fd98a5dcfc6569858d0
    5 N560982223d914851bb4ade59ca76f280
    6 N745775f575154ced8110f13faa84b9df
    7 N75b80c62c8b94347a0dbd599fc09408a
    8 N7b8f7611ecb24da197731486572ae960
    9 Nad9f8d5300b44159a0acadd7da4350d8
    10 Nbc48bdfcad28498ea75453e9c9f83db8
    11 Nc78e2192fb374a0395f2f668bf85a8d4
    12 Nfabf3291ed9b4320b18a5c3249a2d7bf
    13 anzsrc-for:09
    14 anzsrc-for:0904
    15 schema:author Nc437bd9ca28d416eaf136e5a50804bd5
    16 schema:citation sg:pub.10.1023/a:1019090520407
    17 sg:pub.10.1023/b:toca.0000013537.13540.0e
    18 https://app.dimensions.ai/details/publication/pub.1079810421
    19 https://doi.org/10.1002/jctb.5030320730
    20 https://doi.org/10.1002/jctb.503310119
    21 https://doi.org/10.1002/star.19860380308
    22 https://doi.org/10.1002/star.19900420808
    23 https://doi.org/10.1016/0021-9517(73)90234-0
    24 https://doi.org/10.1016/0021-9517(76)90257-8
    25 https://doi.org/10.1016/0039-6028(78)90292-3
    26 https://doi.org/10.1016/j.biombioe.2003.07.005
    27 https://doi.org/10.1016/j.molcata.2005.10.003
    28 https://doi.org/10.1016/s0378-3812(99)00231-9
    29 https://doi.org/10.1016/s0926-860x(00)00854-1
    30 https://doi.org/10.1021/i360037a011
    31 https://doi.org/10.1021/je60031a007
    32 https://doi.org/10.1021/jo01102a002
    33 https://doi.org/10.1126/science.1114736
    34 https://doi.org/10.1126/science.1126337
    35 schema:datePublished 2007-07
    36 schema:datePublishedReg 2007-07-01
    37 schema:description Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N2f572a4fe79d44c3910bb096d6cae804
    42 Nf5a6c78559bb4bd6a74c370f82ccbdb9
    43 sg:journal.1018957
    44 schema:name Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
    45 schema:pagination 982
    46 schema:productId N1b43041c69dd4de585ff91059c7b5d83
    47 N690f98f10e0342d9b3b204adbeb6b021
    48 N76ad7a455ea14c30bf537058d73ccdc2
    49 N9e0c3cdda738487296066defb4ee941f
    50 Nb2841b6ee54840a8a5fa1ed67b11604a
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013696134
    52 https://doi.org/10.1038/nature05923
    53 schema:sdDatePublished 2019-04-10T16:28
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N0ff6a374cf9c434dbefb12e9743593bf
    56 schema:url https://www.nature.com/articles/nature05923
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N0ff6a374cf9c434dbefb12e9743593bf schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N13eecafe8d13441f9e0d557d35d1e707 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    63 schema:name Transportation
    64 rdf:type schema:DefinedTerm
    65 N1b43041c69dd4de585ff91059c7b5d83 schema:name doi
    66 schema:value 10.1038/nature05923
    67 rdf:type schema:PropertyValue
    68 N1cc773f9bfb944e68207ea38ce2fb60b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Solubility
    70 rdf:type schema:DefinedTerm
    71 N21de82ab91064cd8865abfb0046f6ef1 rdf:first sg:person.01306737320.98
    72 rdf:rest Nb176bae437544b8c8b90a74907eda129
    73 N23c74b29728b4454a7362176a8c215d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Bioelectric Energy Sources
    75 rdf:type schema:DefinedTerm
    76 N2f572a4fe79d44c3910bb096d6cae804 schema:issueNumber 7147
    77 rdf:type schema:PublicationIssue
    78 N323080b5e8714fd98a5dcfc6569858d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Oxygen
    80 rdf:type schema:DefinedTerm
    81 N560982223d914851bb4ade59ca76f280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Fructose
    83 rdf:type schema:DefinedTerm
    84 N690f98f10e0342d9b3b204adbeb6b021 schema:name pubmed_id
    85 schema:value 17581580
    86 rdf:type schema:PropertyValue
    87 N745775f575154ced8110f13faa84b9df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Ethanol
    89 rdf:type schema:DefinedTerm
    90 N75b80c62c8b94347a0dbd599fc09408a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Phase Transition
    92 rdf:type schema:DefinedTerm
    93 N76ad7a455ea14c30bf537058d73ccdc2 schema:name readcube_id
    94 schema:value 413eeadea93cf728d167ed74c59536d4ef2be065f13c7ecd2ed5f31504f0901c
    95 rdf:type schema:PropertyValue
    96 N7b8f7611ecb24da197731486572ae960 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Conservation of Energy Resources
    98 rdf:type schema:DefinedTerm
    99 N9e0c3cdda738487296066defb4ee941f schema:name dimensions_id
    100 schema:value pub.1013696134
    101 rdf:type schema:PropertyValue
    102 Nad9f8d5300b44159a0acadd7da4350d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Furans
    104 rdf:type schema:DefinedTerm
    105 Nb176bae437544b8c8b90a74907eda129 rdf:first sg:person.0740452223.21
    106 rdf:rest Nfa4269ad38404b82aabbfcd5142f856f
    107 Nb2841b6ee54840a8a5fa1ed67b11604a schema:name nlm_unique_id
    108 schema:value 0410462
    109 rdf:type schema:PropertyValue
    110 Nbc48bdfcad28498ea75453e9c9f83db8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Biomass
    112 rdf:type schema:DefinedTerm
    113 Nc437bd9ca28d416eaf136e5a50804bd5 rdf:first sg:person.01327446603.44
    114 rdf:rest N21de82ab91064cd8865abfb0046f6ef1
    115 Nc78e2192fb374a0395f2f668bf85a8d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Carbohydrate Metabolism
    117 rdf:type schema:DefinedTerm
    118 Nf5a6c78559bb4bd6a74c370f82ccbdb9 schema:volumeNumber 447
    119 rdf:type schema:PublicationVolume
    120 Nfa4269ad38404b82aabbfcd5142f856f rdf:first sg:person.01233363143.71
    121 rdf:rest rdf:nil
    122 Nfabf3291ed9b4320b18a5c3249a2d7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Catalysis
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Engineering
    127 rdf:type schema:DefinedTerm
    128 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Chemical Engineering
    130 rdf:type schema:DefinedTerm
    131 sg:journal.1018957 schema:issn 0090-0028
    132 1476-4687
    133 schema:name Nature
    134 rdf:type schema:Periodical
    135 sg:person.01233363143.71 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    136 schema:familyName Dumesic
    137 schema:givenName James A.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233363143.71
    139 rdf:type schema:Person
    140 sg:person.01306737320.98 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    141 schema:familyName Barrett
    142 schema:givenName Christopher J.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306737320.98
    144 rdf:type schema:Person
    145 sg:person.01327446603.44 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    146 schema:familyName Román-Leshkov
    147 schema:givenName Yuriy
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327446603.44
    149 rdf:type schema:Person
    150 sg:person.0740452223.21 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    151 schema:familyName Liu
    152 schema:givenName Zhen Y.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740452223.21
    154 rdf:type schema:Person
    155 sg:pub.10.1023/a:1019090520407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011556211
    156 https://doi.org/10.1023/a:1019090520407
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1023/b:toca.0000013537.13540.0e schema:sameAs https://app.dimensions.ai/details/publication/pub.1008874837
    159 https://doi.org/10.1023/b:toca.0000013537.13540.0e
    160 rdf:type schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1079810421 schema:CreativeWork
    162 https://doi.org/10.1002/jctb.5030320730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018017925
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/jctb.503310119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022026499
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/star.19860380308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027382523
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1002/star.19900420808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036904509
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/0021-9517(73)90234-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045820172
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/0021-9517(76)90257-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033315348
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/0039-6028(78)90292-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775495
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.biombioe.2003.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029716563
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.molcata.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034869011
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0378-3812(99)00231-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289644
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s0926-860x(00)00854-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049513331
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1021/i360037a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055530383
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1021/je60031a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055885907
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1021/jo01102a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056004325
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1114736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009106987
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.1126337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453694
    193 rdf:type schema:CreativeWork
    194 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    195 schema:name Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...