Tunable nanowire nonlinear optical probe View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-06-28

AUTHORS

Yuri Nakayama, Peter J. Pauzauskie, Aleksandra Radenovic, Robert M. Onorato, Richard J. Saykally, Jan Liphardt, Peidong Yang

ABSTRACT

One crucial challenge for subwavelength optics has been the development of a tunable source of coherent laser radiation for use in the physical, information and biological sciences that is stable at room temperature and physiological conditions. Current advanced near-field imaging techniques using fibre-optic scattering probes have already achieved spatial resolution down to the 20-nm range. Recently reported far-field approaches for optical microscopy, including stimulated emission depletion, structured illumination, and photoactivated localization microscopy, have enabled impressive, theoretically unlimited spatial resolution of fluorescent biomolecular complexes. Previous work with laser tweezers has suggested that optical traps could be used to create novel spatial probes and sensors. Inorganic nanowires have diameters substantially below the wavelength of visible light and have electronic and optical properties that make them ideal for subwavelength laser and imaging technology. Here we report the development of an electrode-free, continuously tunable coherent visible light source compatible with physiological environments, from individual potassium niobate (KNbO3) nanowires. These wires exhibit efficient second harmonic generation, and act as frequency converters, allowing the local synthesis of a wide range of colours via sum and difference frequency generation. We use this tunable nanometric light source to implement a novel form of subwavelength microscopy, in which an infrared laser is used to optically trap and scan a nanowire over a sample, suggesting a wide range of potential applications in physics, chemistry, materials science and biology. More... »

PAGES

1098

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05921

DOI

http://dx.doi.org/10.1038/nature05921

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004274622

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17597756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infrared Rays", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lasers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Scanning Probe", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanowires", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Niobium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Optics and Photonics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sony (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.410792.9", 
          "name": [
            "Department of Chemistry,", 
            "Materials Laboratories, Sony Corporation, 4-16-1 Okata, Atsugi-shi, Kanagawa 243-0021, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakayama", 
        "givenName": "Yuri", 
        "id": "sg:person.015736405503.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736405503.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry,", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pauzauskie", 
        "givenName": "Peter J.", 
        "id": "sg:person.0633544021.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633544021.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, and,", 
            "Physical Biosciences Division and,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radenovic", 
        "givenName": "Aleksandra", 
        "id": "sg:person.0735527471.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735527471.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemistry,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onorato", 
        "givenName": "Robert M.", 
        "id": "sg:person.01173243203.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173243203.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemistry,", 
            "Physical Biosciences Division and,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saykally", 
        "givenName": "Richard J.", 
        "id": "sg:person.013476656501.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476656501.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, and,", 
            "Biophysics Graduate Group, University of California", 
            "Physical Biosciences Division and,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liphardt", 
        "givenName": "Jan", 
        "id": "sg:person.01057454007.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057454007.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry,", 
            "Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Peidong", 
        "id": "sg:person.01173002561.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173002561.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/opex.13.008906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0604965103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014802722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187326", 
          "https://doi.org/10.1038/nature01935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187326", 
          "https://doi.org/10.1038/nature01935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp053800a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018154894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp053800a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018154894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1127344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022108219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1997.3880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023122284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330769a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023765266", 
          "https://doi.org/10.1038/330769a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489920", 
          "https://doi.org/10.1038/nature01353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024489920", 
          "https://doi.org/10.1038/nature01353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp051813i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028097255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp051813i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028097255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028639692", 
          "https://doi.org/10.1038/nmat1563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028639692", 
          "https://doi.org/10.1038/nmat1563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028701181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0406877102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030344502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0406877102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030344502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390051103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032788415", 
          "https://doi.org/10.1007/s003390051103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5504.630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045299172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp034482n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056053224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp034482n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056053224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052416a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052416a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl015686n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl015686n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0487774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0487774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.94865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058135004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.143903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.143903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1100999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062450852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.251.5000.1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062541692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.42.6099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063070641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.14.002268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.9.000380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065178129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.9.000507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065178141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.18.001678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065214684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.19.000159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065214888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2005.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06-28", 
    "datePublishedReg": "2007-06-28", 
    "description": "One crucial challenge for subwavelength optics has been the development of a tunable source of coherent laser radiation for use in the physical, information and biological sciences that is stable at room temperature and physiological conditions. Current advanced near-field imaging techniques using fibre-optic scattering probes have already achieved spatial resolution down to the 20-nm range. Recently reported far-field approaches for optical microscopy, including stimulated emission depletion, structured illumination, and photoactivated localization microscopy, have enabled impressive, theoretically unlimited spatial resolution of fluorescent biomolecular complexes. Previous work with laser tweezers has suggested that optical traps could be used to create novel spatial probes and sensors. Inorganic nanowires have diameters substantially below the wavelength of visible light and have electronic and optical properties that make them ideal for subwavelength laser and imaging technology. Here we report the development of an electrode-free, continuously tunable coherent visible light source compatible with physiological environments, from individual potassium niobate (KNbO3) nanowires. These wires exhibit efficient second harmonic generation, and act as frequency converters, allowing the local synthesis of a wide range of colours via sum and difference frequency generation. We use this tunable nanometric light source to implement a novel form of subwavelength microscopy, in which an infrared laser is used to optically trap and scan a nanowire over a sample, suggesting a wide range of potential applications in physics, chemistry, materials science and biology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05921", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7148", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "447"
      }
    ], 
    "name": "Tunable nanowire nonlinear optical probe", 
    "pagination": "1098", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "145e77c5ebfcb18ef9a10998681459d8c7583fcd314c7904215f852d461a0767"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17597756"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05921"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004274622"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05921", 
      "https://app.dimensions.ai/details/publication/pub.1004274622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05921"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05921'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05921'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05921'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05921'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      66 URIs      28 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05921 schema:about N0458657296b64f56bfac1786e49bd1b5
2 N112a60a6daa24a3c9ac645f25d2eb9d9
3 N5f0b20fd7b0f413cbe8f0c89c0db4dca
4 N6d06fb7c8b3c41d2b8e20b6e05624612
5 N84ef568c8316469bbb4cfdf27ce73645
6 Na7b6a25f0c7f4691969be13c959b8d71
7 Naed2c2189b9549f0ae4022884256fd90
8 Nb7ee05b9297d4063b6b108ac904bf7aa
9 anzsrc-for:02
10 anzsrc-for:0299
11 schema:author N6b7e81b7a0364028a981fd53c199331f
12 schema:citation sg:pub.10.1007/s003390051103
13 sg:pub.10.1038/330769a0
14 sg:pub.10.1038/nature01353
15 sg:pub.10.1038/nature01935
16 sg:pub.10.1038/nmat1563
17 https://doi.org/10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w
18 https://doi.org/10.1006/jsbi.1997.3880
19 https://doi.org/10.1021/jp034482n
20 https://doi.org/10.1021/jp051813i
21 https://doi.org/10.1021/jp052416a
22 https://doi.org/10.1021/jp053800a
23 https://doi.org/10.1021/nl015686n
24 https://doi.org/10.1021/nl0487774
25 https://doi.org/10.1063/1.94865
26 https://doi.org/10.1073/pnas.0406877102
27 https://doi.org/10.1073/pnas.0604965103
28 https://doi.org/10.1103/physrevlett.82.4014
29 https://doi.org/10.1103/physrevlett.96.143903
30 https://doi.org/10.1126/science.1100999
31 https://doi.org/10.1126/science.1127344
32 https://doi.org/10.1126/science.251.5000.1468
33 https://doi.org/10.1126/science.291.5504.630
34 https://doi.org/10.1143/jjap.42.6099
35 https://doi.org/10.1364/josab.14.002268
36 https://doi.org/10.1364/josab.9.000380
37 https://doi.org/10.1364/josab.9.000507
38 https://doi.org/10.1364/ol.18.001678
39 https://doi.org/10.1364/ol.19.000159
40 https://doi.org/10.1364/opex.13.008906
41 https://doi.org/10.1557/mrs2005.26
42 schema:datePublished 2007-06-28
43 schema:datePublishedReg 2007-06-28
44 schema:description One crucial challenge for subwavelength optics has been the development of a tunable source of coherent laser radiation for use in the physical, information and biological sciences that is stable at room temperature and physiological conditions. Current advanced near-field imaging techniques using fibre-optic scattering probes have already achieved spatial resolution down to the 20-nm range. Recently reported far-field approaches for optical microscopy, including stimulated emission depletion, structured illumination, and photoactivated localization microscopy, have enabled impressive, theoretically unlimited spatial resolution of fluorescent biomolecular complexes. Previous work with laser tweezers has suggested that optical traps could be used to create novel spatial probes and sensors. Inorganic nanowires have diameters substantially below the wavelength of visible light and have electronic and optical properties that make them ideal for subwavelength laser and imaging technology. Here we report the development of an electrode-free, continuously tunable coherent visible light source compatible with physiological environments, from individual potassium niobate (KNbO3) nanowires. These wires exhibit efficient second harmonic generation, and act as frequency converters, allowing the local synthesis of a wide range of colours via sum and difference frequency generation. We use this tunable nanometric light source to implement a novel form of subwavelength microscopy, in which an infrared laser is used to optically trap and scan a nanowire over a sample, suggesting a wide range of potential applications in physics, chemistry, materials science and biology.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N142a85f036d34a9c95c88cc5a6732825
49 Nc3855ac289834ddcbbba1f361153989b
50 sg:journal.1018957
51 schema:name Tunable nanowire nonlinear optical probe
52 schema:pagination 1098
53 schema:productId N33adc52f0f164f65a3e862a64d783599
54 N77927e1c3007490bb829ebd657ed183e
55 N7a48e9a72c9b47d3a40348c7d73fa68b
56 N8d0e024f16e941b1b4375bd14b87e92d
57 Nfb2780779e2c486a91838819f09cb914
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004274622
59 https://doi.org/10.1038/nature05921
60 schema:sdDatePublished 2019-04-10T14:47
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Ndb152e9310aa4f9da59abeabe4a2b48b
63 schema:url https://www.nature.com/articles/nature05921
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0458657296b64f56bfac1786e49bd1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Oxides
69 rdf:type schema:DefinedTerm
70 N112a60a6daa24a3c9ac645f25d2eb9d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Lasers
72 rdf:type schema:DefinedTerm
73 N142a85f036d34a9c95c88cc5a6732825 schema:volumeNumber 447
74 rdf:type schema:PublicationVolume
75 N1b8703ce06064154b7a5d0fe17eaf6ff schema:name Biophysics Graduate Group, University of California
76 Department of Physics, and,
77 Physical Biosciences Division and,
78 rdf:type schema:Organization
79 N2e22a9fee15c45038aa3b5df3f600761 schema:name Department of Chemistry,
80 Physical Biosciences Division and,
81 rdf:type schema:Organization
82 N33adc52f0f164f65a3e862a64d783599 schema:name nlm_unique_id
83 schema:value 0410462
84 rdf:type schema:PropertyValue
85 N3862f7a2879c48cd8bdc55dae0fe5893 rdf:first sg:person.0633544021.23
86 rdf:rest Nf6bd1691379a491a89b87a873fc668d7
87 N5f0b20fd7b0f413cbe8f0c89c0db4dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Microscopy, Scanning Probe
89 rdf:type schema:DefinedTerm
90 N6b7e81b7a0364028a981fd53c199331f rdf:first sg:person.015736405503.51
91 rdf:rest N3862f7a2879c48cd8bdc55dae0fe5893
92 N6d06fb7c8b3c41d2b8e20b6e05624612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Niobium
94 rdf:type schema:DefinedTerm
95 N756680ef8d70471688bdab314bcda8c3 rdf:first sg:person.01173002561.96
96 rdf:rest rdf:nil
97 N77927e1c3007490bb829ebd657ed183e schema:name doi
98 schema:value 10.1038/nature05921
99 rdf:type schema:PropertyValue
100 N7a48e9a72c9b47d3a40348c7d73fa68b schema:name pubmed_id
101 schema:value 17597756
102 rdf:type schema:PropertyValue
103 N84ef568c8316469bbb4cfdf27ce73645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Optics and Photonics
105 rdf:type schema:DefinedTerm
106 N8d0e024f16e941b1b4375bd14b87e92d schema:name readcube_id
107 schema:value 145e77c5ebfcb18ef9a10998681459d8c7583fcd314c7904215f852d461a0767
108 rdf:type schema:PropertyValue
109 N933facfb874e4f6787a57545e26e8201 rdf:first sg:person.01173243203.03
110 rdf:rest Nac681a4b59754d98a45537458b162eef
111 Na00deb88c73f4968958e0678feabc535 schema:name Department of Physics, and,
112 Physical Biosciences Division and,
113 rdf:type schema:Organization
114 Na7b6a25f0c7f4691969be13c959b8d71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Potassium
116 rdf:type schema:DefinedTerm
117 Nac681a4b59754d98a45537458b162eef rdf:first sg:person.013476656501.53
118 rdf:rest Nda36ee460a5d42afb64696b400a7e779
119 Naed2c2189b9549f0ae4022884256fd90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Nanowires
121 rdf:type schema:DefinedTerm
122 Nb7ee05b9297d4063b6b108ac904bf7aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Infrared Rays
124 rdf:type schema:DefinedTerm
125 Nc3855ac289834ddcbbba1f361153989b schema:issueNumber 7148
126 rdf:type schema:PublicationIssue
127 Nd4143c5062ce482ab6438a50177bf316 schema:name Department of Chemistry,
128 rdf:type schema:Organization
129 Nda36ee460a5d42afb64696b400a7e779 rdf:first sg:person.01057454007.74
130 rdf:rest N756680ef8d70471688bdab314bcda8c3
131 Ndb152e9310aa4f9da59abeabe4a2b48b schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nf6bd1691379a491a89b87a873fc668d7 rdf:first sg:person.0735527471.41
134 rdf:rest N933facfb874e4f6787a57545e26e8201
135 Nfb2780779e2c486a91838819f09cb914 schema:name dimensions_id
136 schema:value pub.1004274622
137 rdf:type schema:PropertyValue
138 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
139 schema:name Physical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
142 schema:name Other Physical Sciences
143 rdf:type schema:DefinedTerm
144 sg:journal.1018957 schema:issn 0090-0028
145 1476-4687
146 schema:name Nature
147 rdf:type schema:Periodical
148 sg:person.01057454007.74 schema:affiliation N1b8703ce06064154b7a5d0fe17eaf6ff
149 schema:familyName Liphardt
150 schema:givenName Jan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057454007.74
152 rdf:type schema:Person
153 sg:person.01173002561.96 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
154 schema:familyName Yang
155 schema:givenName Peidong
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173002561.96
157 rdf:type schema:Person
158 sg:person.01173243203.03 schema:affiliation Nd4143c5062ce482ab6438a50177bf316
159 schema:familyName Onorato
160 schema:givenName Robert M.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173243203.03
162 rdf:type schema:Person
163 sg:person.013476656501.53 schema:affiliation N2e22a9fee15c45038aa3b5df3f600761
164 schema:familyName Saykally
165 schema:givenName Richard J.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013476656501.53
167 rdf:type schema:Person
168 sg:person.015736405503.51 schema:affiliation https://www.grid.ac/institutes/grid.410792.9
169 schema:familyName Nakayama
170 schema:givenName Yuri
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015736405503.51
172 rdf:type schema:Person
173 sg:person.0633544021.23 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
174 schema:familyName Pauzauskie
175 schema:givenName Peter J.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633544021.23
177 rdf:type schema:Person
178 sg:person.0735527471.41 schema:affiliation Na00deb88c73f4968958e0678feabc535
179 schema:familyName Radenovic
180 schema:givenName Aleksandra
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735527471.41
182 rdf:type schema:Person
183 sg:pub.10.1007/s003390051103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032788415
184 https://doi.org/10.1007/s003390051103
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/330769a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765266
187 https://doi.org/10.1038/330769a0
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature01353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024489920
190 https://doi.org/10.1038/nature01353
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature01935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017187326
193 https://doi.org/10.1038/nature01935
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nmat1563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028639692
196 https://doi.org/10.1038/nmat1563
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1028701181
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1006/jsbi.1997.3880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023122284
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/jp034482n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056053224
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/jp051813i schema:sameAs https://app.dimensions.ai/details/publication/pub.1028097255
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/jp052416a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056061285
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/jp053800a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018154894
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/nl015686n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215202
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/nl0487774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215951
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.94865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058135004
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1073/pnas.0406877102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030344502
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1073/pnas.0604965103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014802722
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.82.4014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819461
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.96.143903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832075
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1100999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062450852
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.1127344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022108219
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.251.5000.1468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062541692
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.291.5504.630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299172
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1143/jjap.42.6099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063070641
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1364/josab.14.002268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168650
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1364/josab.9.000380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065178129
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1364/josab.9.000507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065178141
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1364/ol.18.001678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065214684
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1364/ol.19.000159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065214888
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1364/opex.13.008906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163943
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1557/mrs2005.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968883
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
249 schema:name Department of Chemistry,
250 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
251 rdf:type schema:Organization
252 https://www.grid.ac/institutes/grid.410792.9 schema:alternateName Sony (Japan)
253 schema:name Department of Chemistry,
254 Materials Laboratories, Sony Corporation, 4-16-1 Okata, Atsugi-shi, Kanagawa 243-0021, Japan
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...