Electronic measurement and control of spin transport in silicon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05

AUTHORS

Ian Appelbaum, Biqin Huang, Douwe J. Monsma

ABSTRACT

The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon. More... »

PAGES

295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05803

DOI

http://dx.doi.org/10.1038/nature05803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038046463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17507978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Appelbaum", 
        "givenName": "Ian", 
        "id": "sg:person.013331133337.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331133337.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Biqin", 
        "id": "sg:person.011644433635.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644433635.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cambridge NanoTech Inc., Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monsma", 
        "givenName": "Douwe J.", 
        "id": "sg:person.0717230241.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717230241.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000034370", 
          "https://doi.org/10.1038/nphys543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.196101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010851958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.196101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010851958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.176603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.176603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1449530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018282538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.026602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027274940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.026602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027274940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(77)90054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045894065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(77)90054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045894065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.193207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051643644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.193207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051643644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.256603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.256603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1116865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05803", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7142", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "447"
      }
    ], 
    "name": "Electronic measurement and control of spin transport in silicon", 
    "pagination": "295", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b53d706ff745b2aa0e4f4dbeb85b40ad8e5836e9a97357134bb17afd7af92869"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17507978"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05803"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038046463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05803", 
      "https://app.dimensions.ai/details/publication/pub.1038046463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05803'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05803 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4de45bb201334adc8836f675110a96b7
4 schema:citation sg:pub.10.1038/16420
5 sg:pub.10.1038/416713a
6 sg:pub.10.1038/nature02202
7 sg:pub.10.1038/nature04937
8 sg:pub.10.1038/nphys543
9 https://doi.org/10.1016/0038-1101(77)90054-5
10 https://doi.org/10.1063/1.1449530
11 https://doi.org/10.1103/physrev.90.988
12 https://doi.org/10.1103/physrevb.62.r4790
13 https://doi.org/10.1103/physrevb.64.045323
14 https://doi.org/10.1103/physrevb.68.193207
15 https://doi.org/10.1103/physrevlett.55.1790
16 https://doi.org/10.1103/physrevlett.74.5260
17 https://doi.org/10.1103/physrevlett.80.4313
18 https://doi.org/10.1103/physrevlett.84.5022
19 https://doi.org/10.1103/physrevlett.90.256603
20 https://doi.org/10.1103/physrevlett.93.097602
21 https://doi.org/10.1103/physrevlett.94.056601
22 https://doi.org/10.1103/physrevlett.94.126802
23 https://doi.org/10.1103/physrevlett.96.176603
24 https://doi.org/10.1103/physrevlett.96.196101
25 https://doi.org/10.1103/physrevlett.97.026602
26 https://doi.org/10.1103/revmodphys.76.323
27 https://doi.org/10.1126/science.1116865
28 https://doi.org/10.1126/science.281.5375.407
29 schema:datePublished 2007-05
30 schema:datePublishedReg 2007-05-01
31 schema:description The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf Naad7def6eb4a490bb948c5f450856755
36 Ne7f15cc4b8954d248ac9e08126bad1c4
37 sg:journal.1018957
38 schema:name Electronic measurement and control of spin transport in silicon
39 schema:pagination 295
40 schema:productId N08e9f07cec2745c795feae1b852c27f6
41 N24be3da8db134def99a0bfac48ad71c0
42 N3bd9cc119fcf4c80b15555de0b072b81
43 Nc40212461cb54044b2aa9631b277b196
44 Nfe68a16b8a114683ad2ce90ec4268f80
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046463
46 https://doi.org/10.1038/nature05803
47 schema:sdDatePublished 2019-04-10T21:51
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N8be0915cb5414134ac7eb59de12773cf
50 schema:url https://www.nature.com/articles/nature05803
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N08e9f07cec2745c795feae1b852c27f6 schema:name readcube_id
55 schema:value b53d706ff745b2aa0e4f4dbeb85b40ad8e5836e9a97357134bb17afd7af92869
56 rdf:type schema:PropertyValue
57 N24be3da8db134def99a0bfac48ad71c0 schema:name dimensions_id
58 schema:value pub.1038046463
59 rdf:type schema:PropertyValue
60 N2dd225ed52d84f28b4690a28de5bab5f rdf:first sg:person.011644433635.65
61 rdf:rest Ne53badcd82544be888a1c073621f6624
62 N3bd9cc119fcf4c80b15555de0b072b81 schema:name doi
63 schema:value 10.1038/nature05803
64 rdf:type schema:PropertyValue
65 N4de45bb201334adc8836f675110a96b7 rdf:first sg:person.013331133337.50
66 rdf:rest N2dd225ed52d84f28b4690a28de5bab5f
67 N8be0915cb5414134ac7eb59de12773cf schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N9406e98d39ab45fa8950035396b4f742 schema:name Cambridge NanoTech Inc., Cambridge, Massachusetts 02139, USA
70 rdf:type schema:Organization
71 Naad7def6eb4a490bb948c5f450856755 schema:issueNumber 7142
72 rdf:type schema:PublicationIssue
73 Nc40212461cb54044b2aa9631b277b196 schema:name pubmed_id
74 schema:value 17507978
75 rdf:type schema:PropertyValue
76 Ne53badcd82544be888a1c073621f6624 rdf:first sg:person.0717230241.46
77 rdf:rest rdf:nil
78 Ne7f15cc4b8954d248ac9e08126bad1c4 schema:volumeNumber 447
79 rdf:type schema:PublicationVolume
80 Nfe68a16b8a114683ad2ce90ec4268f80 schema:name nlm_unique_id
81 schema:value 0410462
82 rdf:type schema:PropertyValue
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1018957 schema:issn 0090-0028
90 1476-4687
91 schema:name Nature
92 rdf:type schema:Periodical
93 sg:person.011644433635.65 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
94 schema:familyName Huang
95 schema:givenName Biqin
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644433635.65
97 rdf:type schema:Person
98 sg:person.013331133337.50 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
99 schema:familyName Appelbaum
100 schema:givenName Ian
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331133337.50
102 rdf:type schema:Person
103 sg:person.0717230241.46 schema:affiliation N9406e98d39ab45fa8950035396b4f742
104 schema:familyName Monsma
105 schema:givenName Douwe J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717230241.46
107 rdf:type schema:Person
108 sg:pub.10.1038/16420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033723558
109 https://doi.org/10.1038/16420
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/416713a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410236
112 https://doi.org/10.1038/416713a
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature02202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260956
115 https://doi.org/10.1038/nature02202
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature04937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306812
118 https://doi.org/10.1038/nature04937
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nphys543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000034370
121 https://doi.org/10.1038/nphys543
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0038-1101(77)90054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045894065
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1449530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018282538
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrev.90.988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460794
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.62.r4790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012531780
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.64.045323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600279
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.68.193207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051643644
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.74.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811340
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.80.4313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817462
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.84.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821365
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.90.256603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826901
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.93.097602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030346984
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.94.056601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829850
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.94.126802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830100
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.96.176603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884850
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.96.196101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010851958
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.026602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027274940
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/revmodphys.76.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326605
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.1116865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452541
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.281.5375.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561823
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
164 schema:name Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...