Electronic measurement and control of spin transport in silicon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-05

AUTHORS

Ian Appelbaum, Biqin Huang, Douwe J. Monsma

ABSTRACT

The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon. More... »

PAGES

295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05803

DOI

http://dx.doi.org/10.1038/nature05803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038046463

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17507978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Appelbaum", 
        "givenName": "Ian", 
        "id": "sg:person.013331133337.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331133337.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delaware", 
          "id": "https://www.grid.ac/institutes/grid.33489.35", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Biqin", 
        "id": "sg:person.011644433635.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644433635.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cambridge NanoTech Inc., Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monsma", 
        "givenName": "Douwe J.", 
        "id": "sg:person.0717230241.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717230241.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000034370", 
          "https://doi.org/10.1038/nphys543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.196101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010851958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.196101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010851958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012531780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.176603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.176603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1449530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018282538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306812", 
          "https://doi.org/10.1038/nature04937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.026602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027274940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.026602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027274940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.097602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030346984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033723558", 
          "https://doi.org/10.1038/16420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(77)90054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045894065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(77)90054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045894065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.193207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051643644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.193207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051643644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.90.988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.045323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.256603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.256603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1116865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05803", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7142", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "447"
      }
    ], 
    "name": "Electronic measurement and control of spin transport in silicon", 
    "pagination": "295", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b53d706ff745b2aa0e4f4dbeb85b40ad8e5836e9a97357134bb17afd7af92869"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17507978"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05803"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038046463"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05803", 
      "https://app.dimensions.ai/details/publication/pub.1038046463"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05803"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05803'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05803 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc0681adc0b0f433b90b4a860387c541f
4 schema:citation sg:pub.10.1038/16420
5 sg:pub.10.1038/416713a
6 sg:pub.10.1038/nature02202
7 sg:pub.10.1038/nature04937
8 sg:pub.10.1038/nphys543
9 https://doi.org/10.1016/0038-1101(77)90054-5
10 https://doi.org/10.1063/1.1449530
11 https://doi.org/10.1103/physrev.90.988
12 https://doi.org/10.1103/physrevb.62.r4790
13 https://doi.org/10.1103/physrevb.64.045323
14 https://doi.org/10.1103/physrevb.68.193207
15 https://doi.org/10.1103/physrevlett.55.1790
16 https://doi.org/10.1103/physrevlett.74.5260
17 https://doi.org/10.1103/physrevlett.80.4313
18 https://doi.org/10.1103/physrevlett.84.5022
19 https://doi.org/10.1103/physrevlett.90.256603
20 https://doi.org/10.1103/physrevlett.93.097602
21 https://doi.org/10.1103/physrevlett.94.056601
22 https://doi.org/10.1103/physrevlett.94.126802
23 https://doi.org/10.1103/physrevlett.96.176603
24 https://doi.org/10.1103/physrevlett.96.196101
25 https://doi.org/10.1103/physrevlett.97.026602
26 https://doi.org/10.1103/revmodphys.76.323
27 https://doi.org/10.1126/science.1116865
28 https://doi.org/10.1126/science.281.5375.407
29 schema:datePublished 2007-05
30 schema:datePublishedReg 2007-05-01
31 schema:description The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10 mum undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N62c71d4294824e23a50b38d001181538
36 N8c081e3fa35f474286184be08ea6ec8c
37 sg:journal.1018957
38 schema:name Electronic measurement and control of spin transport in silicon
39 schema:pagination 295
40 schema:productId N84a0a379a58f44879a3f6d0f3e8eb6e0
41 N8a1bc3c58447462ab269e935e66cc67d
42 Nb20b188d84604bd08e125d2198a38ed4
43 Nc68173980b3c43f9a55ebd83baa2246e
44 Nc6eee92880da4c979e943ca182bfbbaa
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046463
46 https://doi.org/10.1038/nature05803
47 schema:sdDatePublished 2019-04-10T21:51
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N08d5dc7670fc4946ab00b0057138d025
50 schema:url https://www.nature.com/articles/nature05803
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N08d5dc7670fc4946ab00b0057138d025 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N62c71d4294824e23a50b38d001181538 schema:volumeNumber 447
57 rdf:type schema:PublicationVolume
58 N84a0a379a58f44879a3f6d0f3e8eb6e0 schema:name readcube_id
59 schema:value b53d706ff745b2aa0e4f4dbeb85b40ad8e5836e9a97357134bb17afd7af92869
60 rdf:type schema:PropertyValue
61 N8a1bc3c58447462ab269e935e66cc67d schema:name dimensions_id
62 schema:value pub.1038046463
63 rdf:type schema:PropertyValue
64 N8c081e3fa35f474286184be08ea6ec8c schema:issueNumber 7142
65 rdf:type schema:PublicationIssue
66 N8c3cb7144cc04e0f94cac8e29f1c3cb0 schema:name Cambridge NanoTech Inc., Cambridge, Massachusetts 02139, USA
67 rdf:type schema:Organization
68 Na71ccf6a001f43a5b3a5e0520a1d8683 rdf:first sg:person.0717230241.46
69 rdf:rest rdf:nil
70 Nb20b188d84604bd08e125d2198a38ed4 schema:name pubmed_id
71 schema:value 17507978
72 rdf:type schema:PropertyValue
73 Nc0681adc0b0f433b90b4a860387c541f rdf:first sg:person.013331133337.50
74 rdf:rest Nc780a43bc5d742ab8eb9beb22eb9e502
75 Nc68173980b3c43f9a55ebd83baa2246e schema:name nlm_unique_id
76 schema:value 0410462
77 rdf:type schema:PropertyValue
78 Nc6eee92880da4c979e943ca182bfbbaa schema:name doi
79 schema:value 10.1038/nature05803
80 rdf:type schema:PropertyValue
81 Nc780a43bc5d742ab8eb9beb22eb9e502 rdf:first sg:person.011644433635.65
82 rdf:rest Na71ccf6a001f43a5b3a5e0520a1d8683
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1018957 schema:issn 0090-0028
90 1476-4687
91 schema:name Nature
92 rdf:type schema:Periodical
93 sg:person.011644433635.65 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
94 schema:familyName Huang
95 schema:givenName Biqin
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644433635.65
97 rdf:type schema:Person
98 sg:person.013331133337.50 schema:affiliation https://www.grid.ac/institutes/grid.33489.35
99 schema:familyName Appelbaum
100 schema:givenName Ian
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013331133337.50
102 rdf:type schema:Person
103 sg:person.0717230241.46 schema:affiliation N8c3cb7144cc04e0f94cac8e29f1c3cb0
104 schema:familyName Monsma
105 schema:givenName Douwe J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717230241.46
107 rdf:type schema:Person
108 sg:pub.10.1038/16420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033723558
109 https://doi.org/10.1038/16420
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/416713a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410236
112 https://doi.org/10.1038/416713a
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature02202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260956
115 https://doi.org/10.1038/nature02202
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature04937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306812
118 https://doi.org/10.1038/nature04937
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nphys543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000034370
121 https://doi.org/10.1038/nphys543
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0038-1101(77)90054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045894065
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1449530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018282538
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrev.90.988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460794
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.62.r4790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012531780
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.64.045323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600279
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.68.193207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051643644
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.74.5260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811340
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.80.4313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817462
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.84.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821365
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.90.256603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826901
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.93.097602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030346984
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.94.056601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829850
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.94.126802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830100
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.96.176603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884850
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.96.196101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010851958
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.026602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027274940
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/revmodphys.76.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326605
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.1116865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452541
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.281.5375.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561823
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
164 schema:name Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...