Chiral magnetic order at surfaces driven by inversion asymmetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05

AUTHORS

M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, R. Wiesendanger

ABSTRACT

Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors. More... »

PAGES

190

Journal

TITLE

Nature

ISSUE

7141

VOLUME

447

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05802

DOI

http://dx.doi.org/10.1038/nature05802

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021819555

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17495922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bode", 
        "givenName": "M.", 
        "id": "sg:person.0610160261.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610160261.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperforschung, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heide", 
        "givenName": "M.", 
        "id": "sg:person.01103364061.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103364061.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Bergmann", 
        "givenName": "K.", 
        "id": "sg:person.01065535601.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065535601.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferriani", 
        "givenName": "P.", 
        "id": "sg:person.0604573661.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604573661.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinze", 
        "givenName": "S.", 
        "id": "sg:person.0767135461.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767135461.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperforschung, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bihlmayer", 
        "givenName": "G.", 
        "id": "sg:person.01322723703.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322723703.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubetzka", 
        "givenName": "A.", 
        "id": "sg:person.0734174714.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734174714.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pietzsch", 
        "givenName": "O.", 
        "id": "sg:person.0605017701.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605017701.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Institut f\u00fcr Festk\u00f6rperforschung, Forschungszentrum J\u00fclich, 52425 J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bl\u00fcgel", 
        "givenName": "S.", 
        "id": "sg:person.01125142737.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125142737.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiesendanger", 
        "givenName": "R.", 
        "id": "sg:person.01265725661.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265725661.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/424631a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005512694", 
          "https://doi.org/10.1038/424631a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/424631a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005512694", 
          "https://doi.org/10.1038/424631a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005919021", 
          "https://doi.org/10.1038/35057423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005919021", 
          "https://doi.org/10.1038/35057423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-006-3692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012660323", 
          "https://doi.org/10.1007/s00339-006-3692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-006-3692-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012660323", 
          "https://doi.org/10.1007/s00339-006-3692-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/66/4/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021868539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01328601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026775032", 
          "https://doi.org/10.1007/bf01328601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031347564", 
          "https://doi.org/10.1038/35057421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031347564", 
          "https://doi.org/10.1038/35057421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043365383", 
          "https://doi.org/10.1038/nmat1646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043365383", 
          "https://doi.org/10.1038/nmat1646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1150218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057678751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.120.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060423562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.237205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.237205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.087204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.60.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.60.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1120639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5472.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.59-60.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072128979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05802", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7141", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "447"
      }
    ], 
    "name": "Chiral magnetic order at surfaces driven by inversion asymmetry", 
    "pagination": "190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67f4b412129c9897d5e61ddbed064331aa5cd38f77a93c25300328eddf0ffc55"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17495922"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05802"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021819555"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05802", 
      "https://app.dimensions.ai/details/publication/pub.1021819555"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05802"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05802'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05802'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05802'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05802'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05802 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb2c8dd599f4546db84545f38358aa421
4 schema:citation sg:pub.10.1007/bf01328601
5 sg:pub.10.1007/s00339-006-3692-z
6 sg:pub.10.1038/35057421
7 sg:pub.10.1038/35057423
8 sg:pub.10.1038/424631a
9 sg:pub.10.1038/nature01967
10 sg:pub.10.1038/nature05056
11 sg:pub.10.1038/nmat1646
12 https://doi.org/10.1016/0304-8853(96)00062-5
13 https://doi.org/10.1063/1.1150218
14 https://doi.org/10.1088/0034-4885/66/4/203
15 https://doi.org/10.1103/physrev.120.91
16 https://doi.org/10.1103/physrev.136.b864
17 https://doi.org/10.1103/physrevb.54.9353
18 https://doi.org/10.1103/physrevb.66.014425
19 https://doi.org/10.1103/physrevlett.77.3865
20 https://doi.org/10.1103/physrevlett.86.4132
21 https://doi.org/10.1103/physrevlett.89.226101
22 https://doi.org/10.1103/physrevlett.89.237205
23 https://doi.org/10.1103/physrevlett.94.087204
24 https://doi.org/10.1103/revmodphys.60.209
25 https://doi.org/10.1126/science.1105722
26 https://doi.org/10.1126/science.1120639
27 https://doi.org/10.1126/science.288.5472.1805
28 https://doi.org/10.4028/www.scientific.net/msf.59-60.439
29 schema:datePublished 2007-05
30 schema:datePublishedReg 2007-05-01
31 schema:description Chirality is a fascinating phenomenon that can manifest itself in subtle ways, for example in biochemistry (in the observed single-handedness of biomolecules) and in particle physics (in the charge-parity violation of electroweak interactions). In condensed matter, magnetic materials can also display single-handed, or homochiral, spin structures. This may be caused by the Dzyaloshinskii-Moriya interaction, which arises from spin-orbit scattering of electrons in an inversion-asymmetric crystal field. This effect is typically irrelevant in bulk metals as their crystals are inversion symmetric. However, low-dimensional systems lack structural inversion symmetry, so that homochiral spin structures may occur. Here we report the observation of magnetic order of a specific chirality in a single atomic layer of manganese on a tungsten (110) substrate. Spin-polarized scanning tunnelling microscopy reveals that adjacent spins are not perfectly antiferromagnetic but slightly canted, resulting in a spin spiral structure with a period of about 12 nm. We show by quantitative theory that this chiral order is caused by the Dzyaloshinskii-Moriya interaction and leads to a left-rotating spin cycloid. Our findings confirm the significance of this interaction for magnets in reduced dimensions. Chirality in nanoscale magnets may play a crucial role in spintronic devices, where the spin rather than the charge of an electron is used for data transmission and manipulation. For instance, a spin-polarized current flowing through chiral magnetic structures will exert a spin-torque on the magnetic structure, causing a variety of excitations or manipulations of the magnetization and giving rise to microwave emission, magnetization switching, or magnetic motors.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N20aecb7b753347afb4f52e627177bb4b
36 N953e0c1371cc46f8b8d078e00e70a2ee
37 sg:journal.1018957
38 schema:name Chiral magnetic order at surfaces driven by inversion asymmetry
39 schema:pagination 190
40 schema:productId N0a9dfce2a61b43e9922df0fb4b8996f1
41 N64dd2b5ca1f64ace8c9ce7b7d4256b84
42 N7fa777f4b4014922a2b93a11795d89e4
43 N981930a74423451c88d82b8e8fdd58a3
44 Ncf5d0fe656034efc91aa7ae27a0578f6
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819555
46 https://doi.org/10.1038/nature05802
47 schema:sdDatePublished 2019-04-10T21:50
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N2ae2b74178b04649aa2d6b08145c39f7
50 schema:url https://www.nature.com/articles/nature05802
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0a9dfce2a61b43e9922df0fb4b8996f1 schema:name readcube_id
55 schema:value 67f4b412129c9897d5e61ddbed064331aa5cd38f77a93c25300328eddf0ffc55
56 rdf:type schema:PropertyValue
57 N20aecb7b753347afb4f52e627177bb4b schema:issueNumber 7141
58 rdf:type schema:PublicationIssue
59 N2ae2b74178b04649aa2d6b08145c39f7 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3fd8bccc794d49b3aede215cfaf625a2 rdf:first sg:person.01125142737.92
62 rdf:rest N462c8bd8b3c049a295e43a835406eac6
63 N462c8bd8b3c049a295e43a835406eac6 rdf:first sg:person.01265725661.60
64 rdf:rest rdf:nil
65 N4ba88b74e35c4847ab5373c7c8545bfa rdf:first sg:person.01065535601.82
66 rdf:rest N6be59603c7124fe3bf02c45341274270
67 N4d525c19c541493fa365330c57e4c654 rdf:first sg:person.0734174714.03
68 rdf:rest Nc875f5ba25144fbd8534cb193080d84c
69 N5c585d5f400f49839f60061f9ef29692 rdf:first sg:person.01322723703.88
70 rdf:rest N4d525c19c541493fa365330c57e4c654
71 N64dd2b5ca1f64ace8c9ce7b7d4256b84 schema:name dimensions_id
72 schema:value pub.1021819555
73 rdf:type schema:PropertyValue
74 N6be59603c7124fe3bf02c45341274270 rdf:first sg:person.0604573661.41
75 rdf:rest N815d19524d0d4466b27b4f6a8780cfd0
76 N7fa777f4b4014922a2b93a11795d89e4 schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 N815d19524d0d4466b27b4f6a8780cfd0 rdf:first sg:person.0767135461.33
80 rdf:rest N5c585d5f400f49839f60061f9ef29692
81 N94f19e92527240998bd00115e1f069e7 rdf:first sg:person.01103364061.51
82 rdf:rest N4ba88b74e35c4847ab5373c7c8545bfa
83 N953e0c1371cc46f8b8d078e00e70a2ee schema:volumeNumber 447
84 rdf:type schema:PublicationVolume
85 N981930a74423451c88d82b8e8fdd58a3 schema:name pubmed_id
86 schema:value 17495922
87 rdf:type schema:PropertyValue
88 Nb2c8dd599f4546db84545f38358aa421 rdf:first sg:person.0610160261.64
89 rdf:rest N94f19e92527240998bd00115e1f069e7
90 Nc875f5ba25144fbd8534cb193080d84c rdf:first sg:person.0605017701.59
91 rdf:rest N3fd8bccc794d49b3aede215cfaf625a2
92 Ncf5d0fe656034efc91aa7ae27a0578f6 schema:name doi
93 schema:value 10.1038/nature05802
94 rdf:type schema:PropertyValue
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Physical Sciences
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01065535601.82 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
106 schema:familyName von Bergmann
107 schema:givenName K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065535601.82
109 rdf:type schema:Person
110 sg:person.01103364061.51 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
111 schema:familyName Heide
112 schema:givenName M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103364061.51
114 rdf:type schema:Person
115 sg:person.01125142737.92 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
116 schema:familyName Blügel
117 schema:givenName S.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125142737.92
119 rdf:type schema:Person
120 sg:person.01265725661.60 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
121 schema:familyName Wiesendanger
122 schema:givenName R.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265725661.60
124 rdf:type schema:Person
125 sg:person.01322723703.88 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
126 schema:familyName Bihlmayer
127 schema:givenName G.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322723703.88
129 rdf:type schema:Person
130 sg:person.0604573661.41 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
131 schema:familyName Ferriani
132 schema:givenName P.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604573661.41
134 rdf:type schema:Person
135 sg:person.0605017701.59 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
136 schema:familyName Pietzsch
137 schema:givenName O.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605017701.59
139 rdf:type schema:Person
140 sg:person.0610160261.64 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
141 schema:familyName Bode
142 schema:givenName M.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610160261.64
144 rdf:type schema:Person
145 sg:person.0734174714.03 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
146 schema:familyName Kubetzka
147 schema:givenName A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734174714.03
149 rdf:type schema:Person
150 sg:person.0767135461.33 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
151 schema:familyName Heinze
152 schema:givenName S.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767135461.33
154 rdf:type schema:Person
155 sg:pub.10.1007/bf01328601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026775032
156 https://doi.org/10.1007/bf01328601
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00339-006-3692-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012660323
159 https://doi.org/10.1007/s00339-006-3692-z
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/35057421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347564
162 https://doi.org/10.1038/35057421
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/35057423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005919021
165 https://doi.org/10.1038/35057423
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/424631a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005512694
168 https://doi.org/10.1038/424631a
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature01967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006825169
171 https://doi.org/10.1038/nature01967
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
174 https://doi.org/10.1038/nature05056
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043365383
177 https://doi.org/10.1038/nmat1646
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.1150218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057678751
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/0034-4885/66/4/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021868539
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrev.120.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060423562
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrev.136.b864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429813
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.66.014425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603654
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.86.4132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822990
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.89.226101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825656
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.89.237205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825694
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.94.087204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829972
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/revmodphys.60.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839149
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1126/science.1105722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451261
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1126/science.1120639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453232
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1126/science.288.5472.1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569803
210 rdf:type schema:CreativeWork
211 https://doi.org/10.4028/www.scientific.net/msf.59-60.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072128979
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
214 schema:name Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
217 schema:name Institute of Applied Physics and Microstructure Research Center, University of Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...