Lanthanide contraction and magnetism in the heavy rare earth elements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04

AUTHORS

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, W. M. Temmerman

ABSTRACT

The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii. More... »

PAGES

650

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05668

DOI

http://dx.doi.org/10.1038/nature05668

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052139283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17410171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "I. D.", 
        "id": "sg:person.01012151201.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012151201.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Institut f\u00fcr Physik, Martin-Luther-Universit\u00e4t Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e4ne", 
        "givenName": "M.", 
        "id": "sg:person.0677534702.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677534702.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Max Planck Institut f\u00fcr Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ernst", 
        "givenName": "A.", 
        "id": "sg:person.01161033561.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161033561.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Institut f\u00fcr Physik, Martin-Luther-Universit\u00e4t Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hergert", 
        "givenName": "W.", 
        "id": "sg:person.01112720361.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112720361.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcders", 
        "givenName": "M.", 
        "id": "sg:person.011000305613.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000305613.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mahidol University", 
          "id": "https://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poulter", 
        "givenName": "J.", 
        "id": "sg:person.010654055207.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654055207.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staunton", 
        "givenName": "J. B.", 
        "id": "sg:person.013400224504.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400224504.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svane", 
        "givenName": "A.", 
        "id": "sg:person.01131602076.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szotek", 
        "givenName": "Z.", 
        "id": "sg:person.01176325102.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Temmerman", 
        "givenName": "W. M.", 
        "id": "sg:person.015343736027.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/14/25/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002934957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(95)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012879927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)00767-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015593218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017345760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017345760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022083164", 
          "https://doi.org/10.1038/21595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/17/327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024374264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040292338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040292338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1273(02)33008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041692484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/15/6/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.4584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.4584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.4420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.4420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.14107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.14107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1522704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062233336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2000-00218-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04", 
    "datePublishedReg": "2007-04-01", 
    "description": "The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05668", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7136", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "446"
      }
    ], 
    "name": "Lanthanide contraction and magnetism in the heavy rare earth elements", 
    "pagination": "650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f85b5c2cb09fdbe3ff74509d5dc3ebc220eb5285ef99a3a71c84e2007072ee40"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17410171"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05668"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052139283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05668", 
      "https://app.dimensions.ai/details/publication/pub.1052139283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71714_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05668"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05668'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05668 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Na7a031df312a45e581b88fd01fd29c97
4 schema:citation sg:pub.10.1038/21595
5 https://doi.org/10.1016/0022-3697(95)00122-0
6 https://doi.org/10.1016/0304-8853(94)00767-5
7 https://doi.org/10.1016/0370-1573(94)90103-1
8 https://doi.org/10.1016/s0168-1273(02)33008-3
9 https://doi.org/10.1088/0305-4608/15/6/018
10 https://doi.org/10.1088/0953-8984/14/25/305
11 https://doi.org/10.1088/0953-8984/15/17/327
12 https://doi.org/10.1103/physrev.159.466
13 https://doi.org/10.1103/physrev.168.672
14 https://doi.org/10.1103/physrevb.20.4584
15 https://doi.org/10.1103/physrevb.23.5048
16 https://doi.org/10.1103/physrevb.49.4348
17 https://doi.org/10.1103/physrevb.52.4420
18 https://doi.org/10.1103/physrevb.55.14107
19 https://doi.org/10.1103/physrevb.62.13844
20 https://doi.org/10.1103/physrevb.71.205109
21 https://doi.org/10.1103/physrevlett.21.432
22 https://doi.org/10.1103/physrevlett.69.371
23 https://doi.org/10.1103/physrevlett.79.941
24 https://doi.org/10.1103/physrevlett.82.3867
25 https://doi.org/10.1119/1.1522704
26 https://doi.org/10.1209/epl/i2000-00218-2
27 schema:datePublished 2007-04
28 schema:datePublishedReg 2007-04-01
29 schema:description The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N1a70efd87b634c98947eb64f2cde53a1
34 N576c17ec997941a6b01e578ebfd9f8d0
35 sg:journal.1018957
36 schema:name Lanthanide contraction and magnetism in the heavy rare earth elements
37 schema:pagination 650
38 schema:productId N148a25196b7b4913a5c7bc06095cacb7
39 N1ee8a0edd13a4cb4a5ea9a08c4bdfaa7
40 N39a0873ab7dc4a7d8aaf939cef460183
41 N7e07c8a4cebe4ebaa52bd3565096150c
42 N89509b24c2e747608862d8a35eba3536
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052139283
44 https://doi.org/10.1038/nature05668
45 schema:sdDatePublished 2019-04-11T13:01
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nb3fc33fa1ed1460fbcdd3281a268bded
48 schema:url https://www.nature.com/articles/nature05668
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N02d830dbd6cd48ff988fb92a7682c2f0 rdf:first sg:person.0677534702.48
53 rdf:rest Ndfa43a633bdf425fb7eccfb370154534
54 N148a25196b7b4913a5c7bc06095cacb7 schema:name nlm_unique_id
55 schema:value 0410462
56 rdf:type schema:PropertyValue
57 N1a70efd87b634c98947eb64f2cde53a1 schema:issueNumber 7136
58 rdf:type schema:PublicationIssue
59 N1ee8a0edd13a4cb4a5ea9a08c4bdfaa7 schema:name readcube_id
60 schema:value f85b5c2cb09fdbe3ff74509d5dc3ebc220eb5285ef99a3a71c84e2007072ee40
61 rdf:type schema:PropertyValue
62 N2e69f6d069014f56b1236c2320960adc schema:name Max Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
63 rdf:type schema:Organization
64 N39a0873ab7dc4a7d8aaf939cef460183 schema:name dimensions_id
65 schema:value pub.1052139283
66 rdf:type schema:PropertyValue
67 N4d5494fb80dd4302afc15878be6a63bb rdf:first sg:person.015343736027.67
68 rdf:rest rdf:nil
69 N576c17ec997941a6b01e578ebfd9f8d0 schema:volumeNumber 446
70 rdf:type schema:PublicationVolume
71 N7e07c8a4cebe4ebaa52bd3565096150c schema:name doi
72 schema:value 10.1038/nature05668
73 rdf:type schema:PropertyValue
74 N89509b24c2e747608862d8a35eba3536 schema:name pubmed_id
75 schema:value 17410171
76 rdf:type schema:PropertyValue
77 N9455721bda164eaabd3e1547f396c2ef rdf:first sg:person.01112720361.17
78 rdf:rest Ncee9d8d6ba924380b152547dfc94fea9
79 N949df7607136490991f77e0608cb1e07 rdf:first sg:person.010654055207.00
80 rdf:rest Nccf91e75d77446c0b161727f7484c33c
81 Na70fbe5aed12498aa30249e6ad896b8f rdf:first sg:person.01176325102.44
82 rdf:rest N4d5494fb80dd4302afc15878be6a63bb
83 Na7a031df312a45e581b88fd01fd29c97 rdf:first sg:person.01012151201.02
84 rdf:rest N02d830dbd6cd48ff988fb92a7682c2f0
85 Nb3fc33fa1ed1460fbcdd3281a268bded schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbb5901aa055b4df8b741ebac119df595 rdf:first sg:person.01131602076.77
88 rdf:rest Na70fbe5aed12498aa30249e6ad896b8f
89 Nccf91e75d77446c0b161727f7484c33c rdf:first sg:person.013400224504.75
90 rdf:rest Nbb5901aa055b4df8b741ebac119df595
91 Ncee9d8d6ba924380b152547dfc94fea9 rdf:first sg:person.011000305613.87
92 rdf:rest N949df7607136490991f77e0608cb1e07
93 Ndfa43a633bdf425fb7eccfb370154534 rdf:first sg:person.01161033561.65
94 rdf:rest N9455721bda164eaabd3e1547f396c2ef
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
99 schema:name Inorganic Chemistry
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01012151201.02 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
106 schema:familyName Hughes
107 schema:givenName I. D.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012151201.02
109 rdf:type schema:Person
110 sg:person.010654055207.00 schema:affiliation https://www.grid.ac/institutes/grid.10223.32
111 schema:familyName Poulter
112 schema:givenName J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654055207.00
114 rdf:type schema:Person
115 sg:person.011000305613.87 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
116 schema:familyName Lüders
117 schema:givenName M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000305613.87
119 rdf:type schema:Person
120 sg:person.01112720361.17 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
121 schema:familyName Hergert
122 schema:givenName W.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112720361.17
124 rdf:type schema:Person
125 sg:person.01131602076.77 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
126 schema:familyName Svane
127 schema:givenName A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77
129 rdf:type schema:Person
130 sg:person.01161033561.65 schema:affiliation N2e69f6d069014f56b1236c2320960adc
131 schema:familyName Ernst
132 schema:givenName A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161033561.65
134 rdf:type schema:Person
135 sg:person.01176325102.44 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
136 schema:familyName Szotek
137 schema:givenName Z.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44
139 rdf:type schema:Person
140 sg:person.013400224504.75 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
141 schema:familyName Staunton
142 schema:givenName J. B.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400224504.75
144 rdf:type schema:Person
145 sg:person.015343736027.67 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
146 schema:familyName Temmerman
147 schema:givenName W. M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67
149 rdf:type schema:Person
150 sg:person.0677534702.48 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
151 schema:familyName Däne
152 schema:givenName M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677534702.48
154 rdf:type schema:Person
155 sg:pub.10.1038/21595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022083164
156 https://doi.org/10.1038/21595
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0022-3697(95)00122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012879927
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0304-8853(94)00767-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015593218
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0370-1573(94)90103-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017345760
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0168-1273(02)33008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692484
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0305-4608/15/6/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083220
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0953-8984/14/25/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002934957
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-8984/15/17/327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024374264
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.159.466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435817
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrev.168.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438079
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.20.4584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060526714
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.23.5048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724982
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.49.4348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570879
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.52.4420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578250
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.55.14107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583757
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.62.13844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597060
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.71.205109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566791
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.21.432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060771820
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.69.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805884
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.79.941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816586
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.82.3867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040292338
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1119/1.1522704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062233336
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1209/epl/i2000-00218-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235748
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.10223.32 schema:alternateName Mahidol University
203 schema:name Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.482271.a schema:alternateName Daresbury Laboratory
206 schema:name Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
209 schema:name Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
212 schema:name Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg
215 schema:name Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...