Lanthanide contraction and magnetism in the heavy rare earth elements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04

AUTHORS

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, W. M. Temmerman

ABSTRACT

The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii. More... »

PAGES

650

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05668

DOI

http://dx.doi.org/10.1038/nature05668

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052139283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17410171


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "I. D.", 
        "id": "sg:person.01012151201.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012151201.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Institut f\u00fcr Physik, Martin-Luther-Universit\u00e4t Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e4ne", 
        "givenName": "M.", 
        "id": "sg:person.0677534702.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677534702.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Max Planck Institut f\u00fcr Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ernst", 
        "givenName": "A.", 
        "id": "sg:person.01161033561.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161033561.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Institut f\u00fcr Physik, Martin-Luther-Universit\u00e4t Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hergert", 
        "givenName": "W.", 
        "id": "sg:person.01112720361.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112720361.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcders", 
        "givenName": "M.", 
        "id": "sg:person.011000305613.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000305613.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mahidol University", 
          "id": "https://www.grid.ac/institutes/grid.10223.32", 
          "name": [
            "Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poulter", 
        "givenName": "J.", 
        "id": "sg:person.010654055207.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654055207.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Staunton", 
        "givenName": "J. B.", 
        "id": "sg:person.013400224504.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400224504.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svane", 
        "givenName": "A.", 
        "id": "sg:person.01131602076.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szotek", 
        "givenName": "Z.", 
        "id": "sg:person.01176325102.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Temmerman", 
        "givenName": "W. M.", 
        "id": "sg:person.015343736027.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/14/25/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002934957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(95)00122-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012879927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)00767-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015593218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017345760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90103-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017345760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022083164", 
          "https://doi.org/10.1038/21595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/17/327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024374264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.5048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040292338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040292338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1273(02)33008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041692484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050566791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/15/6/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059083220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.159.466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.168.672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.4584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.4584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.4420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.4420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.14107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.14107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1522704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062233336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2000-00218-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235748"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04", 
    "datePublishedReg": "2007-04-01", 
    "description": "The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05668", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7136", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "446"
      }
    ], 
    "name": "Lanthanide contraction and magnetism in the heavy rare earth elements", 
    "pagination": "650", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f85b5c2cb09fdbe3ff74509d5dc3ebc220eb5285ef99a3a71c84e2007072ee40"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17410171"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05668"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052139283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05668", 
      "https://app.dimensions.ai/details/publication/pub.1052139283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71714_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05668"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05668'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05668'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05668 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author Nc00d90d1f0984b84a621f1be3b739959
4 schema:citation sg:pub.10.1038/21595
5 https://doi.org/10.1016/0022-3697(95)00122-0
6 https://doi.org/10.1016/0304-8853(94)00767-5
7 https://doi.org/10.1016/0370-1573(94)90103-1
8 https://doi.org/10.1016/s0168-1273(02)33008-3
9 https://doi.org/10.1088/0305-4608/15/6/018
10 https://doi.org/10.1088/0953-8984/14/25/305
11 https://doi.org/10.1088/0953-8984/15/17/327
12 https://doi.org/10.1103/physrev.159.466
13 https://doi.org/10.1103/physrev.168.672
14 https://doi.org/10.1103/physrevb.20.4584
15 https://doi.org/10.1103/physrevb.23.5048
16 https://doi.org/10.1103/physrevb.49.4348
17 https://doi.org/10.1103/physrevb.52.4420
18 https://doi.org/10.1103/physrevb.55.14107
19 https://doi.org/10.1103/physrevb.62.13844
20 https://doi.org/10.1103/physrevb.71.205109
21 https://doi.org/10.1103/physrevlett.21.432
22 https://doi.org/10.1103/physrevlett.69.371
23 https://doi.org/10.1103/physrevlett.79.941
24 https://doi.org/10.1103/physrevlett.82.3867
25 https://doi.org/10.1119/1.1522704
26 https://doi.org/10.1209/epl/i2000-00218-2
27 schema:datePublished 2007-04
28 schema:datePublishedReg 2007-04-01
29 schema:description The heavy rare earth elements crystallize into hexagonally close packed (h.c.p.) structures and share a common outer electronic configuration, differing only in the number of 4f electrons they have. These chemically inert 4f electrons set up localized magnetic moments, which are coupled via an indirect exchange interaction involving the conduction electrons. This leads to the formation of a wide variety of magnetic structures, the periodicities of which are often incommensurate with the underlying crystal lattice. Such incommensurate ordering is associated with a 'webbed' topology of the momentum space surface separating the occupied and unoccupied electron states (the Fermi surface). The shape of this surface-and hence the magnetic structure-for the heavy rare earth elements is known to depend on the ratio of the interplanar spacing c and the interatomic, intraplanar spacing a of the h.c.p. lattice. A theoretical understanding of this problem is, however, far from complete. Here, using gadolinium as a prototype for all the heavy rare earth elements, we generate a unified magnetic phase diagram, which unequivocally links the magnetic structures of the heavy rare earths to their lattice parameters. In addition to verifying the importance of the c/a ratio, we find that the atomic unit cell volume plays a separate, distinct role in determining the magnetic properties: we show that the trend from ferromagnetism to incommensurate ordering as atomic number increases is connected to the concomitant decrease in unit cell volume. This volume decrease occurs because of the so-called lanthanide contraction, where the addition of electrons to the poorly shielding 4f orbitals leads to an increase in effective nuclear charge and, correspondingly, a decrease in ionic radii.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N55fe8f0d76be41d98a7d00470e451807
34 N953087d1f5044d2e97c4f4c6ed54100a
35 sg:journal.1018957
36 schema:name Lanthanide contraction and magnetism in the heavy rare earth elements
37 schema:pagination 650
38 schema:productId N270f275edc5640efb383bbab57f5fc42
39 N530036ce39d242d1ad3738ef25e205e5
40 N6ffc256e8d9d437e8b61065a74142ef4
41 N91deec52fcc746428bb6126ab87ed14f
42 Na122a06f8df04b4297148194e88550eb
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052139283
44 https://doi.org/10.1038/nature05668
45 schema:sdDatePublished 2019-04-11T13:01
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nd25d6fbc07ed4946b7a4b612cb7a8094
48 schema:url https://www.nature.com/articles/nature05668
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N15c4dcee77d7456aa592b5ad457fe676 rdf:first sg:person.01131602076.77
53 rdf:rest N803d757211724ca2b7639c71783bb19f
54 N270f275edc5640efb383bbab57f5fc42 schema:name pubmed_id
55 schema:value 17410171
56 rdf:type schema:PropertyValue
57 N3224583b09b047aaad5abc09f8e4a7bd rdf:first sg:person.015343736027.67
58 rdf:rest rdf:nil
59 N48c98a25154f4db996581ecec1204a70 rdf:first sg:person.01112720361.17
60 rdf:rest Nc83d635baa084537a69bd6d5fbc65a80
61 N530036ce39d242d1ad3738ef25e205e5 schema:name nlm_unique_id
62 schema:value 0410462
63 rdf:type schema:PropertyValue
64 N55fe8f0d76be41d98a7d00470e451807 schema:volumeNumber 446
65 rdf:type schema:PublicationVolume
66 N5869f919161e4aa19081a190d71c3bfe rdf:first sg:person.01161033561.65
67 rdf:rest N48c98a25154f4db996581ecec1204a70
68 N5faad7c2bca247c3b4d4c85abaed5eb8 rdf:first sg:person.010654055207.00
69 rdf:rest Na28292625d4d4cfabb5cd86582187bb6
70 N6c8ec3b955b84baba8434e34964946af rdf:first sg:person.0677534702.48
71 rdf:rest N5869f919161e4aa19081a190d71c3bfe
72 N6ffc256e8d9d437e8b61065a74142ef4 schema:name doi
73 schema:value 10.1038/nature05668
74 rdf:type schema:PropertyValue
75 N803d757211724ca2b7639c71783bb19f rdf:first sg:person.01176325102.44
76 rdf:rest N3224583b09b047aaad5abc09f8e4a7bd
77 N91deec52fcc746428bb6126ab87ed14f schema:name dimensions_id
78 schema:value pub.1052139283
79 rdf:type schema:PropertyValue
80 N953087d1f5044d2e97c4f4c6ed54100a schema:issueNumber 7136
81 rdf:type schema:PublicationIssue
82 Na122a06f8df04b4297148194e88550eb schema:name readcube_id
83 schema:value f85b5c2cb09fdbe3ff74509d5dc3ebc220eb5285ef99a3a71c84e2007072ee40
84 rdf:type schema:PropertyValue
85 Na28292625d4d4cfabb5cd86582187bb6 rdf:first sg:person.013400224504.75
86 rdf:rest N15c4dcee77d7456aa592b5ad457fe676
87 Na94af3f85f4e4d818e80489996ac618b schema:name Max Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
88 rdf:type schema:Organization
89 Nc00d90d1f0984b84a621f1be3b739959 rdf:first sg:person.01012151201.02
90 rdf:rest N6c8ec3b955b84baba8434e34964946af
91 Nc83d635baa084537a69bd6d5fbc65a80 rdf:first sg:person.011000305613.87
92 rdf:rest N5faad7c2bca247c3b4d4c85abaed5eb8
93 Nd25d6fbc07ed4946b7a4b612cb7a8094 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
99 schema:name Inorganic Chemistry
100 rdf:type schema:DefinedTerm
101 sg:journal.1018957 schema:issn 0090-0028
102 1476-4687
103 schema:name Nature
104 rdf:type schema:Periodical
105 sg:person.01012151201.02 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
106 schema:familyName Hughes
107 schema:givenName I. D.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012151201.02
109 rdf:type schema:Person
110 sg:person.010654055207.00 schema:affiliation https://www.grid.ac/institutes/grid.10223.32
111 schema:familyName Poulter
112 schema:givenName J.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654055207.00
114 rdf:type schema:Person
115 sg:person.011000305613.87 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
116 schema:familyName Lüders
117 schema:givenName M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000305613.87
119 rdf:type schema:Person
120 sg:person.01112720361.17 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
121 schema:familyName Hergert
122 schema:givenName W.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112720361.17
124 rdf:type schema:Person
125 sg:person.01131602076.77 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
126 schema:familyName Svane
127 schema:givenName A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77
129 rdf:type schema:Person
130 sg:person.01161033561.65 schema:affiliation Na94af3f85f4e4d818e80489996ac618b
131 schema:familyName Ernst
132 schema:givenName A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161033561.65
134 rdf:type schema:Person
135 sg:person.01176325102.44 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
136 schema:familyName Szotek
137 schema:givenName Z.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44
139 rdf:type schema:Person
140 sg:person.013400224504.75 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
141 schema:familyName Staunton
142 schema:givenName J. B.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400224504.75
144 rdf:type schema:Person
145 sg:person.015343736027.67 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
146 schema:familyName Temmerman
147 schema:givenName W. M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67
149 rdf:type schema:Person
150 sg:person.0677534702.48 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
151 schema:familyName Däne
152 schema:givenName M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677534702.48
154 rdf:type schema:Person
155 sg:pub.10.1038/21595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022083164
156 https://doi.org/10.1038/21595
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0022-3697(95)00122-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012879927
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0304-8853(94)00767-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015593218
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0370-1573(94)90103-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017345760
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0168-1273(02)33008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692484
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0305-4608/15/6/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059083220
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/0953-8984/14/25/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002934957
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-8984/15/17/327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024374264
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.159.466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435817
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrev.168.672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438079
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.20.4584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060526714
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.23.5048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724982
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.49.4348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570879
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.52.4420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578250
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.55.14107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583757
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.62.13844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597060
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.71.205109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050566791
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.21.432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060771820
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.69.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805884
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.79.941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816586
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.82.3867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040292338
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1119/1.1522704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062233336
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1209/epl/i2000-00218-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235748
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.10223.32 schema:alternateName Mahidol University
203 schema:name Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.482271.a schema:alternateName Daresbury Laboratory
206 schema:name Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
209 schema:name Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
212 schema:name Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg
215 schema:name Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle, Germany
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...