Observation of the two-channel Kondo effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-03

AUTHORS

R. M. Potok, I. G. Rau, Hadas Shtrikman, Yuval Oreg, D. Goldhaber-Gordon

ABSTRACT

Some of the most intriguing problems in solid-state physics arise when the motion of one electron dramatically affects the motion of surrounding electrons. Traditionally, such highly correlated electron systems have been studied mainly in materials with complex transition metal chemistry. Over the past decade, researchers have learned to confine one or a few electrons within a nanometre-scale semiconductor 'artificial atom', and to understand and control this simple system in detail(3). Here we combine artificial atoms to create a highly correlated electron system within a nano-engineered semiconductor structure. We tune the system in situ through a quantum phase transition between two distinct states, each a version of the Kondo state, in which a bound electron interacts with surrounding mobile electrons. The boundary between these competing Kondo states is a quantum critical point-namely, the exotic and previously elusive two-channel Kondo state, in which electrons in two reservoirs are entangled through their interaction with a single localized spin. More... »

PAGES

167

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05556

DOI

http://dx.doi.org/10.1038/nature05556

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004887046

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17344849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics,", 
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potok", 
        "givenName": "R. M.", 
        "id": "sg:person.01000132517.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000132517.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Applied Physics, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rau", 
        "givenName": "I. G.", 
        "id": "sg:person.01234407364.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234407364.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 96100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shtrikman", 
        "givenName": "Hadas", 
        "id": "sg:person.01311640117.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 96100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oreg", 
        "givenName": "Yuval", 
        "id": "sg:person.01235174414.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics,"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldhaber-Gordon", 
        "givenName": "D.", 
        "id": "sg:person.01077405550.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002698314", 
          "https://doi.org/10.1038/34373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(88)90458-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006186295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(88)90458-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006186295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012195732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.216601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012195732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.2188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.2188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.115316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015849241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.115316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015849241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.5225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020464429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000187398243500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032725171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.045326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032769724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.045326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032769724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018739500101526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035325038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018739500101526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035325038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043529534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043529534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.155301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043814326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.155301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043814326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aphy.1998.5897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048154232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/6/13/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050715742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01980004103019300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.2991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.2991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.40.416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.136602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.136602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.236603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.236603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.236603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.47.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.47.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.32.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063131894"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "Some of the most intriguing problems in solid-state physics arise when the motion of one electron dramatically affects the motion of surrounding electrons. Traditionally, such highly correlated electron systems have been studied mainly in materials with complex transition metal chemistry. Over the past decade, researchers have learned to confine one or a few electrons within a nanometre-scale semiconductor 'artificial atom', and to understand and control this simple system in detail(3). Here we combine artificial atoms to create a highly correlated electron system within a nano-engineered semiconductor structure. We tune the system in situ through a quantum phase transition between two distinct states, each a version of the Kondo state, in which a bound electron interacts with surrounding mobile electrons. The boundary between these competing Kondo states is a quantum critical point-namely, the exotic and previously elusive two-channel Kondo state, in which electrons in two reservoirs are entangled through their interaction with a single localized spin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05556", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7132", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "446"
      }
    ], 
    "name": "Observation of the two-channel Kondo effect", 
    "pagination": "167", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "174985231acb5d1f7644de8041dd58e622919cab9a1186807832ddf6d6433336"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17344849"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05556"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004887046"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05556", 
      "https://app.dimensions.ai/details/publication/pub.1004887046"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05556"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05556'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05556'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05556'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05556'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05556 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2d336d1325fa4547a0e9d4e2652b972c
4 schema:citation sg:pub.10.1038/34373
5 https://doi.org/10.1006/aphy.1998.5897
6 https://doi.org/10.1016/0304-8853(88)90458-1
7 https://doi.org/10.1051/jphys:01980004103019300
8 https://doi.org/10.1080/00018739500101526
9 https://doi.org/10.1080/000187398243500
10 https://doi.org/10.1088/0953-8984/6/13/013
11 https://doi.org/10.1103/physrevb.48.7297
12 https://doi.org/10.1103/physrevb.57.2991
13 https://doi.org/10.1103/physrevb.62.2188
14 https://doi.org/10.1103/physrevb.68.155301
15 https://doi.org/10.1103/physrevb.69.045326
16 https://doi.org/10.1103/physrevb.69.115316
17 https://doi.org/10.1103/physrevlett.40.416
18 https://doi.org/10.1103/physrevlett.45.211
19 https://doi.org/10.1103/physrevlett.59.1240
20 https://doi.org/10.1103/physrevlett.67.2882
21 https://doi.org/10.1103/physrevlett.69.2118
22 https://doi.org/10.1103/physrevlett.72.1064
23 https://doi.org/10.1103/physrevlett.73.1967
24 https://doi.org/10.1103/physrevlett.81.5225
25 https://doi.org/10.1103/physrevlett.90.136602
26 https://doi.org/10.1103/physrevlett.92.216601
27 https://doi.org/10.1103/physrevlett.94.236603
28 https://doi.org/10.1103/revmodphys.47.773
29 https://doi.org/10.1103/revmodphys.79.1217
30 https://doi.org/10.1143/ptp.32.37
31 schema:datePublished 2007-03
32 schema:datePublishedReg 2007-03-01
33 schema:description Some of the most intriguing problems in solid-state physics arise when the motion of one electron dramatically affects the motion of surrounding electrons. Traditionally, such highly correlated electron systems have been studied mainly in materials with complex transition metal chemistry. Over the past decade, researchers have learned to confine one or a few electrons within a nanometre-scale semiconductor 'artificial atom', and to understand and control this simple system in detail(3). Here we combine artificial atoms to create a highly correlated electron system within a nano-engineered semiconductor structure. We tune the system in situ through a quantum phase transition between two distinct states, each a version of the Kondo state, in which a bound electron interacts with surrounding mobile electrons. The boundary between these competing Kondo states is a quantum critical point-namely, the exotic and previously elusive two-channel Kondo state, in which electrons in two reservoirs are entangled through their interaction with a single localized spin.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N2ac30f52794c47dbbd7d63a336326eb7
38 N7cbb8546e56b4f71af3084e73e1cc1df
39 sg:journal.1018957
40 schema:name Observation of the two-channel Kondo effect
41 schema:pagination 167
42 schema:productId N5fae183a502a493c8c189c16e1d4a520
43 N82abe2e328444d1ab0bb86e75e9b3c07
44 N8a5ffb4e76db43a88c3a417593ce8dd4
45 Na7d70b9607c64e7ab8a4ebcd60196b60
46 Nbe152491aa0c4c0f8dd71fc09c07c60b
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004887046
48 https://doi.org/10.1038/nature05556
49 schema:sdDatePublished 2019-04-11T01:46
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Na2bca7dd72bf4dc9800964f8020deb85
52 schema:url https://www.nature.com/articles/nature05556
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2a5b9068a03240f8b3baf1b229e4eb8e rdf:first sg:person.01077405550.04
57 rdf:rest rdf:nil
58 N2ac30f52794c47dbbd7d63a336326eb7 schema:issueNumber 7132
59 rdf:type schema:PublicationIssue
60 N2d336d1325fa4547a0e9d4e2652b972c rdf:first sg:person.01000132517.88
61 rdf:rest Nc9ccfeedd0604c38aadd907b5a4c1740
62 N5fae183a502a493c8c189c16e1d4a520 schema:name dimensions_id
63 schema:value pub.1004887046
64 rdf:type schema:PropertyValue
65 N7cbb8546e56b4f71af3084e73e1cc1df schema:volumeNumber 446
66 rdf:type schema:PublicationVolume
67 N82abe2e328444d1ab0bb86e75e9b3c07 schema:name nlm_unique_id
68 schema:value 0410462
69 rdf:type schema:PropertyValue
70 N8a5ffb4e76db43a88c3a417593ce8dd4 schema:name doi
71 schema:value 10.1038/nature05556
72 rdf:type schema:PropertyValue
73 N9961b59cbf884b4ba2fa4f4ac54654f8 rdf:first sg:person.01235174414.28
74 rdf:rest N2a5b9068a03240f8b3baf1b229e4eb8e
75 Na2bca7dd72bf4dc9800964f8020deb85 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Na7d70b9607c64e7ab8a4ebcd60196b60 schema:name pubmed_id
78 schema:value 17344849
79 rdf:type schema:PropertyValue
80 Nbe152491aa0c4c0f8dd71fc09c07c60b schema:name readcube_id
81 schema:value 174985231acb5d1f7644de8041dd58e622919cab9a1186807832ddf6d6433336
82 rdf:type schema:PropertyValue
83 Nc0991ca3abb04f6a8b4ac086b58f76f2 rdf:first sg:person.01311640117.70
84 rdf:rest N9961b59cbf884b4ba2fa4f4ac54654f8
85 Nc9ccfeedd0604c38aadd907b5a4c1740 rdf:first sg:person.01234407364.41
86 rdf:rest Nc0991ca3abb04f6a8b4ac086b58f76f2
87 Ndc02ccd788f349a7a9e30a497396e740 schema:name Department of Physics,
88 rdf:type schema:Organization
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
93 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
94 rdf:type schema:DefinedTerm
95 sg:journal.1018957 schema:issn 0090-0028
96 1476-4687
97 schema:name Nature
98 rdf:type schema:Periodical
99 sg:person.01000132517.88 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
100 schema:familyName Potok
101 schema:givenName R. M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000132517.88
103 rdf:type schema:Person
104 sg:person.01077405550.04 schema:affiliation Ndc02ccd788f349a7a9e30a497396e740
105 schema:familyName Goldhaber-Gordon
106 schema:givenName D.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04
108 rdf:type schema:Person
109 sg:person.01234407364.41 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
110 schema:familyName Rau
111 schema:givenName I. G.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234407364.41
113 rdf:type schema:Person
114 sg:person.01235174414.28 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
115 schema:familyName Oreg
116 schema:givenName Yuval
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235174414.28
118 rdf:type schema:Person
119 sg:person.01311640117.70 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
120 schema:familyName Shtrikman
121 schema:givenName Hadas
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311640117.70
123 rdf:type schema:Person
124 sg:pub.10.1038/34373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002698314
125 https://doi.org/10.1038/34373
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1006/aphy.1998.5897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048154232
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0304-8853(88)90458-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186295
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1051/jphys:01980004103019300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990260
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00018739500101526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035325038
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/000187398243500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032725171
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0953-8984/6/13/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050715742
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.48.7297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569012
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.57.2991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587866
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.62.2188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014308477
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.68.155301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043814326
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.69.045326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032769724
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.69.115316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015849241
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.40.416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782680
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.45.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785580
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.59.1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795541
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.67.2882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803534
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.69.2118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805415
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.72.1064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808450
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.73.1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043529534
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.81.5225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020464429
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.90.136602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826532
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.92.216601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012195732
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.94.236603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830496
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/revmodphys.47.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838809
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/revmodphys.79.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826730
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/ptp.32.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063131894
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
180 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 96100, Israel
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
183 schema:name Department of Applied Physics, Stanford University, Stanford, California 94305, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
186 schema:name Department of Physics,
187 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...