Bipolar supercurrent in graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-03

AUTHORS

Hubert B. Heersche, Pablo Jarillo-Herrero, Jeroen B. Oostinga, Lieven M. K. Vandersypen, Alberto F. Morpurgo

ABSTRACT

Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point. More... »

PAGES

56

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05555

DOI

http://dx.doi.org/10.1038/nature05555

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012780501

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17330038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heersche", 
        "givenName": "Hubert B.", 
        "id": "sg:person.0664015571.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664015571.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarillo-Herrero", 
        "givenName": "Pablo", 
        "id": "sg:person.01034030721.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oostinga", 
        "givenName": "Jeroen B.", 
        "id": "sg:person.01271055732.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271055732.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vandersypen", 
        "givenName": "Lieven M. K.", 
        "id": "sg:person.014077744544.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077744544.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morpurgo", 
        "givenName": "Alberto F.", 
        "id": "sg:person.01313052523.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313052523.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(01)00065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010427653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014724283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.146801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014724283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.236801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017633811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.236801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017633811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.076602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019297410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.076602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019297410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025795758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.041401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025795758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027688649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2006-00203-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037816708", 
          "https://doi.org/10.1140/epjb/e2006-00203-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040736915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.196804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048844626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.196804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048844626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049601108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049601108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050017917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.236802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050172865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.236802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050172865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050909017", 
          "https://doi.org/10.1038/nature04550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051404887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051404887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.6739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.6739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.3263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.3263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.7526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.7526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.266603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.266603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.36.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.51.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.51.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838913"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05555", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7131", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "446"
      }
    ], 
    "name": "Bipolar supercurrent in graphene", 
    "pagination": "56", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ce29192322c8f245e85bbb97e71c5f846b7f4d4c37236ee37fa6b9ce403ee93"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17330038"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05555"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012780501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05555", 
      "https://app.dimensions.ai/details/publication/pub.1012780501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05555"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05555'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05555'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05555'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05555'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05555 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3f4c0af330f347c4a731e32bb6eac853
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 sg:pub.10.1038/nature04550
7 sg:pub.10.1140/epjb/e2006-00203-1
8 https://doi.org/10.1016/0031-9163(62)91369-0
9 https://doi.org/10.1016/s0370-1573(01)00065-5
10 https://doi.org/10.1103/physrevb.27.6739
11 https://doi.org/10.1103/physrevb.33.3263
12 https://doi.org/10.1103/physrevb.50.7526
13 https://doi.org/10.1103/physrevb.73.125411
14 https://doi.org/10.1103/physrevb.74.041401
15 https://doi.org/10.1103/physrevlett.55.1622
16 https://doi.org/10.1103/physrevlett.72.2458
17 https://doi.org/10.1103/physrevlett.72.2628
18 https://doi.org/10.1103/physrevlett.89.266603
19 https://doi.org/10.1103/physrevlett.95.146801
20 https://doi.org/10.1103/physrevlett.97.016801
21 https://doi.org/10.1103/physrevlett.97.146805
22 https://doi.org/10.1103/physrevlett.97.196804
23 https://doi.org/10.1103/physrevlett.97.236801
24 https://doi.org/10.1103/physrevlett.97.236802
25 https://doi.org/10.1103/physrevlett.98.076602
26 https://doi.org/10.1103/revmodphys.36.225
27 https://doi.org/10.1103/revmodphys.51.101
28 https://doi.org/10.1126/science.1102896
29 https://doi.org/10.1126/science.1125925
30 schema:datePublished 2007-03
31 schema:datePublishedReg 2007-03-01
32 schema:description Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N34d0d96a99ac430f8a0a96b9127e4518
37 N4d37d4797ba84652a97e6c664b0f61d5
38 sg:journal.1018957
39 schema:name Bipolar supercurrent in graphene
40 schema:pagination 56
41 schema:productId N632ef518f32c459f8322510e833e903c
42 N7d093fa88cee49018d93bf72e0b70922
43 Naf359d683d3b4b23b82babdbdcde1bcc
44 Nb46ea802b9a74ec4a813326b1241cbc7
45 Necb9819534ca466fb216349d95c30c69
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012780501
47 https://doi.org/10.1038/nature05555
48 schema:sdDatePublished 2019-04-10T19:45
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N1a95aba363814562bcc0f1ebc445b205
51 schema:url https://www.nature.com/articles/nature05555
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1993508c25ba4948861a63ba2438d7d9 rdf:first sg:person.01313052523.71
56 rdf:rest rdf:nil
57 N1a95aba363814562bcc0f1ebc445b205 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N23670fab92e04693aec5f37e7c784442 rdf:first sg:person.014077744544.16
60 rdf:rest N1993508c25ba4948861a63ba2438d7d9
61 N34d0d96a99ac430f8a0a96b9127e4518 schema:issueNumber 7131
62 rdf:type schema:PublicationIssue
63 N3f4c0af330f347c4a731e32bb6eac853 rdf:first sg:person.0664015571.40
64 rdf:rest N47ce5044c92040f78cd90d6e17f0bf90
65 N47ce5044c92040f78cd90d6e17f0bf90 rdf:first sg:person.01034030721.03
66 rdf:rest Nafa2f00fe610448a95834200e082707d
67 N4d37d4797ba84652a97e6c664b0f61d5 schema:volumeNumber 446
68 rdf:type schema:PublicationVolume
69 N632ef518f32c459f8322510e833e903c schema:name doi
70 schema:value 10.1038/nature05555
71 rdf:type schema:PropertyValue
72 N7d093fa88cee49018d93bf72e0b70922 schema:name nlm_unique_id
73 schema:value 0410462
74 rdf:type schema:PropertyValue
75 Naf359d683d3b4b23b82babdbdcde1bcc schema:name readcube_id
76 schema:value 3ce29192322c8f245e85bbb97e71c5f846b7f4d4c37236ee37fa6b9ce403ee93
77 rdf:type schema:PropertyValue
78 Nafa2f00fe610448a95834200e082707d rdf:first sg:person.01271055732.26
79 rdf:rest N23670fab92e04693aec5f37e7c784442
80 Nb46ea802b9a74ec4a813326b1241cbc7 schema:name dimensions_id
81 schema:value pub.1012780501
82 rdf:type schema:PropertyValue
83 Necb9819534ca466fb216349d95c30c69 schema:name pubmed_id
84 schema:value 17330038
85 rdf:type schema:PropertyValue
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.01034030721.03 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
97 schema:familyName Jarillo-Herrero
98 schema:givenName Pablo
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03
100 rdf:type schema:Person
101 sg:person.01271055732.26 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
102 schema:familyName Oostinga
103 schema:givenName Jeroen B.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271055732.26
105 rdf:type schema:Person
106 sg:person.01313052523.71 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
107 schema:familyName Morpurgo
108 schema:givenName Alberto F.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313052523.71
110 rdf:type schema:Person
111 sg:person.014077744544.16 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
112 schema:familyName Vandersypen
113 schema:givenName Lieven M. K.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077744544.16
115 rdf:type schema:Person
116 sg:person.0664015571.40 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
117 schema:familyName Heersche
118 schema:givenName Hubert B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664015571.40
120 rdf:type schema:Person
121 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
122 https://doi.org/10.1038/nature04233
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
125 https://doi.org/10.1038/nature04235
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature04550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909017
128 https://doi.org/10.1038/nature04550
129 rdf:type schema:CreativeWork
130 sg:pub.10.1140/epjb/e2006-00203-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037816708
131 https://doi.org/10.1140/epjb/e2006-00203-1
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0031-9163(62)91369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017917
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0370-1573(01)00065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010427653
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.27.6739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532690
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.33.3263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539519
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.50.7526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574347
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.73.125411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404887
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.74.041401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025795758
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.55.1622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792126
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.72.2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027688649
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.89.266603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825797
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.95.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014724283
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.97.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167317
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.97.146805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049601108
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.97.196804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048844626
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.97.236801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017633811
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.97.236802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172865
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.98.076602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019297410
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/revmodphys.36.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838279
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/revmodphys.51.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838913
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
178 schema:name Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...