The structure of suspended graphene sheets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-03

AUTHORS

Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth

ABSTRACT

The recent discovery of graphene has sparked much interest, thus far focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particles. However, the physical structure of graphene--a single layer of carbon atoms densely packed in a honeycomb crystal lattice--is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional material, exhibiting such a high crystal quality that electrons can travel submicrometre distances without scattering. On the other hand, perfect two-dimensional crystals cannot exist in the free state, according to both theory and experiment. This incompatibility can be avoided by arguing that all the graphene structures studied so far were an integral part of larger three-dimensional structures, either supported by a bulk substrate or embedded in a three-dimensional matrix. Here we report on individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick, yet they still display long-range crystalline order. However, our studies by transmission electron microscopy also reveal that these suspended graphene sheets are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically thin single-crystal membranes offer ample scope for fundamental research and new technologies, whereas the observed corrugations in the third dimension may provide subtle reasons for the stability of two-dimensional crystals. More... »

PAGES

60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05545

DOI

http://dx.doi.org/10.1038/nature05545

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030811740

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17330039


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Jannik C.", 
        "id": "sg:person.01107342035.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107342035.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geim", 
        "givenName": "A. K.", 
        "id": "sg:person.0721730631.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsnelson", 
        "givenName": "M. I.", 
        "id": "sg:person.0721775233.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novoselov", 
        "givenName": "K. S.", 
        "id": "sg:person.01070436546.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Booth", 
        "givenName": "T. J.", 
        "id": "sg:person.01100431331.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100431331.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "S.", 
        "id": "sg:person.0674632425.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674632425.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-4328(99)00033-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011050733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739468000756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013868774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfrep.2005.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015845714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/439281a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019139066", 
          "https://doi.org/10.1038/439281a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/439281a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019139066", 
          "https://doi.org/10.1038/439281a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/439281a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019139066", 
          "https://doi.org/10.1038/439281a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345003", 
          "https://doi.org/10.1038/nature04969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345003", 
          "https://doi.org/10.1038/nature04969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345003", 
          "https://doi.org/10.1038/nature04969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5729(92)90006-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029383000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5729(92)90006-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029383000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1130681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030731383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040736915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/47/4/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048587637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019870048070108500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.144105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.144105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1934059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062240314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.42.l1073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063071073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199552757.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098751731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098952686", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "The recent discovery of graphene has sparked much interest, thus far focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particles. However, the physical structure of graphene--a single layer of carbon atoms densely packed in a honeycomb crystal lattice--is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional material, exhibiting such a high crystal quality that electrons can travel submicrometre distances without scattering. On the other hand, perfect two-dimensional crystals cannot exist in the free state, according to both theory and experiment. This incompatibility can be avoided by arguing that all the graphene structures studied so far were an integral part of larger three-dimensional structures, either supported by a bulk substrate or embedded in a three-dimensional matrix. Here we report on individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick, yet they still display long-range crystalline order. However, our studies by transmission electron microscopy also reveal that these suspended graphene sheets are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically thin single-crystal membranes offer ample scope for fundamental research and new technologies, whereas the observed corrugations in the third dimension may provide subtle reasons for the stability of two-dimensional crystals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05545", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7131", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "446"
      }
    ], 
    "name": "The structure of suspended graphene sheets", 
    "pagination": "60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "92c8a9a692aae2cc879af5bfd8ba14bfa7835a8f1a8bf30d472b0a2fb6c63408"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17330039"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05545"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030811740"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05545", 
      "https://app.dimensions.ai/details/publication/pub.1030811740"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000589.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05545"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05545'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05545'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05545'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05545'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05545 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N3898cc62cb7f44a78cca76e77814db72
4 schema:citation sg:pub.10.1038/439281a
5 sg:pub.10.1038/nature04233
6 sg:pub.10.1038/nature04235
7 sg:pub.10.1038/nature04969
8 https://app.dimensions.ai/details/publication/pub.1098952686
9 https://doi.org/10.1016/0167-5729(92)90006-w
10 https://doi.org/10.1016/j.surfrep.2005.08.004
11 https://doi.org/10.1016/s0968-4328(99)00033-5
12 https://doi.org/10.1051/jphys:019870048070108500
13 https://doi.org/10.1073/pnas.0502848102
14 https://doi.org/10.1088/0034-4885/47/4/002
15 https://doi.org/10.1093/acprof:oso/9780199552757.001.0001
16 https://doi.org/10.1103/physrev.176.250
17 https://doi.org/10.1103/physrevb.65.144105
18 https://doi.org/10.1103/physrevlett.17.1133
19 https://doi.org/10.1103/physrevlett.69.1209
20 https://doi.org/10.1103/physrevlett.84.5552
21 https://doi.org/10.1103/physrevlett.97.016801
22 https://doi.org/10.1107/s0567739468000756
23 https://doi.org/10.1119/1.1934059
24 https://doi.org/10.1126/science.1102896
25 https://doi.org/10.1126/science.1125925
26 https://doi.org/10.1126/science.1130681
27 https://doi.org/10.1143/jjap.42.l1073
28 schema:datePublished 2007-03
29 schema:datePublishedReg 2007-03-01
30 schema:description The recent discovery of graphene has sparked much interest, thus far focused on the peculiar electronic structure of this material, in which charge carriers mimic massless relativistic particles. However, the physical structure of graphene--a single layer of carbon atoms densely packed in a honeycomb crystal lattice--is also puzzling. On the one hand, graphene appears to be a strictly two-dimensional material, exhibiting such a high crystal quality that electrons can travel submicrometre distances without scattering. On the other hand, perfect two-dimensional crystals cannot exist in the free state, according to both theory and experiment. This incompatibility can be avoided by arguing that all the graphene structures studied so far were an integral part of larger three-dimensional structures, either supported by a bulk substrate or embedded in a three-dimensional matrix. Here we report on individual graphene sheets freely suspended on a microfabricated scaffold in vacuum or air. These membranes are only one atom thick, yet they still display long-range crystalline order. However, our studies by transmission electron microscopy also reveal that these suspended graphene sheets are not perfectly flat: they exhibit intrinsic microscopic roughening such that the surface normal varies by several degrees and out-of-plane deformations reach 1 nm. The atomically thin single-crystal membranes offer ample scope for fundamental research and new technologies, whereas the observed corrugations in the third dimension may provide subtle reasons for the stability of two-dimensional crystals.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N4d29798b550845be86400bc0029634a4
35 Nd662eaeec6964e5ca1740c9fcb3fe1ad
36 sg:journal.1018957
37 schema:name The structure of suspended graphene sheets
38 schema:pagination 60
39 schema:productId N4f85d422f8f34b319d2f4c3c33569b21
40 N6cdda5ec7ea049348e2b04fb6b99f36a
41 Na163d4f21ddf43c8be59d3b0ea722186
42 Nb12bf648962c48aea492face4fadd33b
43 Nf35db0af58ca44fb8445ee9f881ca3f0
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
45 https://doi.org/10.1038/nature05545
46 schema:sdDatePublished 2019-04-11T01:20
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nd7484342e58348b9aeabbf7673ec61eb
49 schema:url https://www.nature.com/articles/nature05545
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1d0d3317b43840608f0c61860abe6bc6 rdf:first sg:person.0721775233.60
54 rdf:rest N650e4fb96d12488b8a6a2d583ac07370
55 N3898cc62cb7f44a78cca76e77814db72 rdf:first sg:person.01107342035.04
56 rdf:rest Nfe784b767d5848aa85b515fec2f7d58a
57 N394ccffa7bdd4d89a59cff8dd5e6ed79 rdf:first sg:person.0674632425.14
58 rdf:rest rdf:nil
59 N3caecb5c9f03462a9ba4adab3e7253eb rdf:first sg:person.01100431331.04
60 rdf:rest N394ccffa7bdd4d89a59cff8dd5e6ed79
61 N4d29798b550845be86400bc0029634a4 schema:volumeNumber 446
62 rdf:type schema:PublicationVolume
63 N4f85d422f8f34b319d2f4c3c33569b21 schema:name nlm_unique_id
64 schema:value 0410462
65 rdf:type schema:PropertyValue
66 N650e4fb96d12488b8a6a2d583ac07370 rdf:first sg:person.01070436546.24
67 rdf:rest N3caecb5c9f03462a9ba4adab3e7253eb
68 N6cdda5ec7ea049348e2b04fb6b99f36a schema:name dimensions_id
69 schema:value pub.1030811740
70 rdf:type schema:PropertyValue
71 Na163d4f21ddf43c8be59d3b0ea722186 schema:name readcube_id
72 schema:value 92c8a9a692aae2cc879af5bfd8ba14bfa7835a8f1a8bf30d472b0a2fb6c63408
73 rdf:type schema:PropertyValue
74 Nb12bf648962c48aea492face4fadd33b schema:name doi
75 schema:value 10.1038/nature05545
76 rdf:type schema:PropertyValue
77 Nd662eaeec6964e5ca1740c9fcb3fe1ad schema:issueNumber 7131
78 rdf:type schema:PublicationIssue
79 Nd7484342e58348b9aeabbf7673ec61eb schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nf35db0af58ca44fb8445ee9f881ca3f0 schema:name pubmed_id
82 schema:value 17330039
83 rdf:type schema:PropertyValue
84 Nfe784b767d5848aa85b515fec2f7d58a rdf:first sg:person.0721730631.45
85 rdf:rest N1d0d3317b43840608f0c61860abe6bc6
86 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
87 schema:name Technology
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
90 schema:name Nanotechnology
91 rdf:type schema:DefinedTerm
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.01070436546.24 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
97 schema:familyName Novoselov
98 schema:givenName K. S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24
100 rdf:type schema:Person
101 sg:person.01100431331.04 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
102 schema:familyName Booth
103 schema:givenName T. J.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100431331.04
105 rdf:type schema:Person
106 sg:person.01107342035.04 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
107 schema:familyName Meyer
108 schema:givenName Jannik C.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107342035.04
110 rdf:type schema:Person
111 sg:person.0674632425.14 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
112 schema:familyName Roth
113 schema:givenName S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674632425.14
115 rdf:type schema:Person
116 sg:person.0721730631.45 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
117 schema:familyName Geim
118 schema:givenName A. K.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45
120 rdf:type schema:Person
121 sg:person.0721775233.60 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
122 schema:familyName Katsnelson
123 schema:givenName M. I.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
125 rdf:type schema:Person
126 sg:pub.10.1038/439281a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019139066
127 https://doi.org/10.1038/439281a
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
130 https://doi.org/10.1038/nature04233
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
133 https://doi.org/10.1038/nature04235
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
136 https://doi.org/10.1038/nature04969
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1098952686 schema:CreativeWork
139 https://doi.org/10.1016/0167-5729(92)90006-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1029383000
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.surfrep.2005.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015845714
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0968-4328(99)00033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011050733
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/jphys:019870048070108500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991834
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/0034-4885/47/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048587637
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1093/acprof:oso/9780199552757.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098751731
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrev.176.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440145
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.65.144105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060602719
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.69.1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040221074
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.84.5552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821453
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.97.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167317
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1107/s0567739468000756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013868774
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1119/1.1934059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062240314
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1130681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731383
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1143/jjap.42.l1073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063071073
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
178 schema:name Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
181 schema:name Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
184 schema:name Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...