Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka

ABSTRACT

In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science. More... »

PAGES

737

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05393

DOI

http://dx.doi.org/10.1038/nature05393

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004756789

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17151663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faure", 
        "givenName": "J.", 
        "id": "sg:person.01353670364.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353670364.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rechatin", 
        "givenName": "C.", 
        "id": "sg:person.010605125253.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605125253.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Norlin", 
        "givenName": "A.", 
        "id": "sg:person.010605722333.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605722333.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lifschitz", 
        "givenName": "A.", 
        "id": "sg:person.0755707622.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755707622.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glinec", 
        "givenName": "Y.", 
        "id": "sg:person.01113361577.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113361577.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d'Optique Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.462947.a", 
          "name": [
            "Laboratoire d'Optique Appliqu\u00e9e, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malka", 
        "givenName": "V.", 
        "id": "sg:person.0732302660.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732302660.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400200795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286271", 
          "https://doi.org/10.1007/s003400200795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.2140115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039410963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radphyschem.2004.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047154510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1380393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057701009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1751171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057812917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2360988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057852563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.866349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058119537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/45/7/306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059024037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.016402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.016402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.43.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060784401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.185002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.185002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.205003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.095001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.095001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831868"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05393", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7120", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "444"
      }
    ], 
    "name": "Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses", 
    "pagination": "737", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16aa74c2ea66f3a4530dfcddf56738901334ffc7898ba13fea755e068027d2a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17151663"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05393"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004756789"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05393", 
      "https://app.dimensions.ai/details/publication/pub.1004756789"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05393"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05393'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05393'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05393'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05393'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05393 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N4d47efc454214fe2840f2bddc0717b55
4 schema:citation sg:pub.10.1007/s003400200795
5 sg:pub.10.1038/nature02900
6 sg:pub.10.1038/nature02939
7 sg:pub.10.1038/nature02963
8 sg:pub.10.1038/nphys418
9 https://doi.org/10.1016/j.radphyschem.2004.06.014
10 https://doi.org/10.1063/1.1380393
11 https://doi.org/10.1063/1.1751171
12 https://doi.org/10.1063/1.2360988
13 https://doi.org/10.1063/1.866349
14 https://doi.org/10.1088/0031-9155/45/7/306
15 https://doi.org/10.1103/physreve.70.016402
16 https://doi.org/10.1103/physrevlett.43.267
17 https://doi.org/10.1103/physrevlett.76.2073
18 https://doi.org/10.1103/physrevlett.79.2682
19 https://doi.org/10.1103/physrevlett.93.185002
20 https://doi.org/10.1103/physrevlett.94.025003
21 https://doi.org/10.1103/physrevlett.95.205003
22 https://doi.org/10.1103/physrevlett.96.095001
23 https://doi.org/10.1118/1.2140115
24 schema:datePublished 2006-12
25 schema:datePublishedReg 2006-12-01
26 schema:description In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread <10 per cent), tuneable (between 15 and 250 MeV) and, most importantly, stable. In addition, the experimental observations are compatible with electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Na0a8ef435da849479683797c3cbe3a1b
31 Ned45ef71d18147f3a6efa615d5a00009
32 sg:journal.1018957
33 schema:name Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses
34 schema:pagination 737
35 schema:productId N66675a7c868843c1aeb10829bbe3fa4e
36 N97682cd06f27420b9a989a39480c73a2
37 Nb5dacb2c5ecb41988f60ef45665ed5fc
38 Ndbe99935b4474690858d68e05f6b2998
39 Ne5104e132af84b71b7884ffe86a7a7d2
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004756789
41 https://doi.org/10.1038/nature05393
42 schema:sdDatePublished 2019-04-11T12:58
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9957cb47922f4a82a05395ed83ebe66c
45 schema:url https://www.nature.com/articles/nature05393
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1295926244e14d68a7c01ddf292a3a70 rdf:first sg:person.010605722333.09
50 rdf:rest Nb8ecec03be75435aa457499b47ddde78
51 N4d47efc454214fe2840f2bddc0717b55 rdf:first sg:person.01353670364.49
52 rdf:rest N5b80e2c874494025808361ea01c7cca6
53 N5b80e2c874494025808361ea01c7cca6 rdf:first sg:person.010605125253.86
54 rdf:rest N1295926244e14d68a7c01ddf292a3a70
55 N66675a7c868843c1aeb10829bbe3fa4e schema:name readcube_id
56 schema:value 16aa74c2ea66f3a4530dfcddf56738901334ffc7898ba13fea755e068027d2a1
57 rdf:type schema:PropertyValue
58 N97682cd06f27420b9a989a39480c73a2 schema:name dimensions_id
59 schema:value pub.1004756789
60 rdf:type schema:PropertyValue
61 N9957cb47922f4a82a05395ed83ebe66c schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Na0a8ef435da849479683797c3cbe3a1b schema:issueNumber 7120
64 rdf:type schema:PublicationIssue
65 Nab27e40021574daf9ba423481ce4929f rdf:first sg:person.0732302660.72
66 rdf:rest rdf:nil
67 Nb5dacb2c5ecb41988f60ef45665ed5fc schema:name doi
68 schema:value 10.1038/nature05393
69 rdf:type schema:PropertyValue
70 Nb8ecec03be75435aa457499b47ddde78 rdf:first sg:person.0755707622.30
71 rdf:rest Ne962c98f3f2a4b02b39a2f66b1c7b9fc
72 Ndbe99935b4474690858d68e05f6b2998 schema:name pubmed_id
73 schema:value 17151663
74 rdf:type schema:PropertyValue
75 Ne5104e132af84b71b7884ffe86a7a7d2 schema:name nlm_unique_id
76 schema:value 0410462
77 rdf:type schema:PropertyValue
78 Ne962c98f3f2a4b02b39a2f66b1c7b9fc rdf:first sg:person.01113361577.43
79 rdf:rest Nab27e40021574daf9ba423481ce4929f
80 Ned45ef71d18147f3a6efa615d5a00009 schema:volumeNumber 444
81 rdf:type schema:PublicationVolume
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1018957 schema:issn 0090-0028
89 1476-4687
90 schema:name Nature
91 rdf:type schema:Periodical
92 sg:person.010605125253.86 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
93 schema:familyName Rechatin
94 schema:givenName C.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605125253.86
96 rdf:type schema:Person
97 sg:person.010605722333.09 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
98 schema:familyName Norlin
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605722333.09
101 rdf:type schema:Person
102 sg:person.01113361577.43 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
103 schema:familyName Glinec
104 schema:givenName Y.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113361577.43
106 rdf:type schema:Person
107 sg:person.01353670364.49 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
108 schema:familyName Faure
109 schema:givenName J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353670364.49
111 rdf:type schema:Person
112 sg:person.0732302660.72 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
113 schema:familyName Malka
114 schema:givenName V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732302660.72
116 rdf:type schema:Person
117 sg:person.0755707622.30 schema:affiliation https://www.grid.ac/institutes/grid.462947.a
118 schema:familyName Lifschitz
119 schema:givenName A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755707622.30
121 rdf:type schema:Person
122 sg:pub.10.1007/s003400200795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286271
123 https://doi.org/10.1007/s003400200795
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature02900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042278002
126 https://doi.org/10.1038/nature02900
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature02939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000739651
129 https://doi.org/10.1038/nature02939
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature02963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005399057
132 https://doi.org/10.1038/nature02963
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nphys418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045050360
135 https://doi.org/10.1038/nphys418
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.radphyschem.2004.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047154510
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1380393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057701009
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1751171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057812917
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.2360988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057852563
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.866349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058119537
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/0031-9155/45/7/306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059024037
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.70.016402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731759
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.43.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060784401
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.76.2073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812760
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.79.2682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815952
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.93.185002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829280
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.94.025003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829696
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.95.205003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831171
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.96.095001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831868
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1118/1.2140115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039410963
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.462947.a schema:alternateName Laboratoire d'Optique Appliquée
168 schema:name Laboratoire d'Optique Appliquée, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...