Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10-18

AUTHORS

Michael T. Lin, M. Flint Beal

ABSTRACT

Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise. More... »

PAGES

787-795

References to SciGraph publications

  • 2006-01-12. Does the mitochondrial genome play a role in the etiology of Alzheimer’s disease? in HUMAN GENETICS
  • 2004-06-09. Gene regulation and DNA damage in the ageing human brain in NATURE
  • 2002-09. Mitochondrial genotypes and cytochrome b variants associated with longevity or Parkinson's disease in JOURNAL OF NEUROLOGY
  • 2000-12. Chronic systemic pesticide exposure reproduces features of Parkinson's disease in NATURE NEUROSCIENCE
  • 2006-04-09. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease in NATURE GENETICS
  • 1992-12. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age in NATURE GENETICS
  • 2006-04-09. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons in NATURE GENETICS
  • 2003-07-15. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes in BMC NEUROSCIENCE
  • 2003-07. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration in NATURE
  • 2001-10. CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations in ACTA NEUROPATHOLOGICA
  • 2005-02. Mitochondrial metabolism of reactive oxygen species in BIOCHEMISTRY (MOSCOW)
  • 2002-07-01. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines in NATURE NEUROSCIENCE
  • 2006-03. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production in NATURE
  • Journal

    TITLE

    Nature

    ISSUE

    7113

    VOLUME

    443

    Related Patents

  • Conformationally Constrained Macrocyclic Compounds
  • Methods Of Treating Parkinson's Disease
  • Spiroquinoxaline Derivatives As Inhibitors Of Non-Apoptotic Regulated Cell-Death
  • Conformationally Constrained Macrocyclic Compounds As Pin1 Modulators
  • Therapeutic Compounds
  • Glycolic Acid And/Or D-Lactic Acid For The Treatment Of Neurodegenerative Diseases
  • Substituted Β-Lapachones For Treating Cancer
  • Methods For In Vitro Investigating Mitochondrial Replication Dysfunction In A Biological Sample, Kits And Uses Thereof, Therapeutic Methods Against Progeroid-Like Syndromes Or Symptomes And Screening Method For Identifying Particular Protease Inhibitor(S) And/Or Nitroso-Redox Stress Scavenger Compound(S)
  • Multifunctional Radical Quenchers For The Treatment Of Mitochondrial Dysfunction
  • Non-Invasive Treatment Of Neurodegenerative Diseases
  • Combination Of N-Acetylcysteine And Lipoic Acid For The Treatment Of A Disease With Axonal Damage And Concomitant Oxidative Lesions
  • Multifunctional Radical Quenchers And Their Uses
  • Pharmaceutical Compositions Active In Preventing, Stabilizing And Treating Alzheimer's Disease
  • Conformationally Constrained Macrocyclic Compounds
  • Spiroquinoxaline Derivatives As Inhibitors Of Non-Apoptotic Regulated Cell-Death
  • Methods For In Vitro Investigating Mitochondrial Replication Dysfunction In A Biological Sample, Kits And Uses Thereof, Therapeutic Methods Against Progeroid-Like Syndromes Or Symptomes And Screening Method For Identifying Particular Protease Inhibitor(S) And/Or Nitroso-Redox Stress Scavenger Compound(S)
  • Glycolic Acid And/Or D-Lactic Acid For The Treatment Of Neurodegenerative Diseases
  • Methods For In Vitro Investigating Mitochondrial Replication Dysfunction In A Biological Sample, Kits And Uses Thereof, Therapeutic Methods Against Progeroid-Like Syndromes Or Symptomes And Screening Method For Identifying Particular Protease Inhibitor(S) And/Or Nitroso-Redox Stress Scavenger Compound(S)
  • Pharmaceutical Compositions Active In Preventing, Stabilizing And Treating Alzheimer's Disease
  • Therapeutic And Diagnostic Method For Ataxia-Telangiectasia
  • Anti-Neurodegenerative Natural Compound Isolated From Alpiniae Oxyphyllae Fructose And Their Total Synthesis
  • Novel Anti-Neurodegenerative Natural Compounds Isolated From Alpiniae Oxyphyllae Fructus And Their Total Synthesis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature05292

    DOI

    http://dx.doi.org/10.1038/nature05292

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003167107

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17051205


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Apoptosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mitochondria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurodegenerative Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidative Stress", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Michael T.", 
            "id": "sg:person.01121177226.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121177226.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beal", 
            "givenName": "M. Flint", 
            "id": "sg:person.012210722377.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210722377.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng1778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050341751", 
              "https://doi.org/10.1038/ng1778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10541-005-0102-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033245980", 
              "https://doi.org/10.1007/s10541-005-0102-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1292-324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025942261", 
              "https://doi.org/10.1038/ng1292-324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-005-0123-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028873048", 
              "https://doi.org/10.1007/s00439-005-0123-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00415-002-1203-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053682837", 
              "https://doi.org/10.1007/s00415-002-1203-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000695004", 
              "https://doi.org/10.1038/nature04543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001579376", 
              "https://doi.org/10.1038/nature02661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052100299", 
              "https://doi.org/10.1038/nature01832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006666875", 
              "https://doi.org/10.1038/81834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020240293", 
              "https://doi.org/10.1038/nn884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004010100399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074895150", 
              "https://doi.org/10.1007/s004010100399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2202-4-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035179546", 
              "https://doi.org/10.1186/1471-2202-4-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029731537", 
              "https://doi.org/10.1038/ng1769"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-10-18", 
        "datePublishedReg": "2006-10-18", 
        "description": "Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature05292", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7113", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "443"
          }
        ], 
        "keywords": [
          "mitochondrial dysfunction", 
          "neurodegenerative diseases", 
          "disease-specific proteins", 
          "disease-related proteins", 
          "mitochondrial DNA", 
          "oxidative stress", 
          "mitochondrial processes", 
          "age-related neurodegenerative diseases", 
          "critical regulator", 
          "cell death", 
          "lines of evidence", 
          "mitochondria", 
          "energy metabolism", 
          "specific interactions", 
          "central role", 
          "protein", 
          "disease pathogenesis", 
          "impressive number", 
          "regulator", 
          "DNA", 
          "mutations", 
          "free radical generation", 
          "strong evidence", 
          "stress", 
          "neurodegeneration", 
          "metabolism", 
          "great promise", 
          "major example", 
          "evidence", 
          "role", 
          "disease", 
          "lines", 
          "interaction", 
          "key features", 
          "pathogenesis", 
          "greatest risk factor", 
          "death", 
          "dysfunction", 
          "factors", 
          "generation", 
          "number", 
          "process", 
          "promise", 
          "risk factors", 
          "features", 
          "example", 
          "therapy", 
          "basic mitochondrial processes"
        ], 
        "name": "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases", 
        "pagination": "787-795", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003167107"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature05292"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17051205"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature05292", 
          "https://app.dimensions.ai/details/publication/pub.1003167107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_423.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature05292"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05292'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05292'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05292'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05292'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      22 PREDICATES      94 URIs      73 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature05292 schema:about N14a4f1fc93ac4f48b2dee902818ec473
    2 N27b658f08c554fa5bbaa0dd823ce07cb
    3 N514c699649a648cead84c523b4cad016
    4 N6943b62fb49847429e48187b77ff2b2c
    5 N8387dcdf928248e6b950ac6545714edc
    6 N8629a3ad7bcb4bb889b68d9b3cbbe4af
    7 Ned4a8bab3a8848979da83c4b31fa8a6b
    8 anzsrc-for:06
    9 anzsrc-for:0601
    10 schema:author N7aca4987f27a405480e6ada0d4e36eb7
    11 schema:citation sg:pub.10.1007/s004010100399
    12 sg:pub.10.1007/s00415-002-1203-5
    13 sg:pub.10.1007/s00439-005-0123-8
    14 sg:pub.10.1007/s10541-005-0102-7
    15 sg:pub.10.1038/81834
    16 sg:pub.10.1038/nature01832
    17 sg:pub.10.1038/nature02661
    18 sg:pub.10.1038/nature04543
    19 sg:pub.10.1038/ng1292-324
    20 sg:pub.10.1038/ng1769
    21 sg:pub.10.1038/ng1778
    22 sg:pub.10.1038/nn884
    23 sg:pub.10.1186/1471-2202-4-16
    24 schema:datePublished 2006-10-18
    25 schema:datePublishedReg 2006-10-18
    26 schema:description Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. Mitochondria are critical regulators of cell death, a key feature of neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both contribute to ageing, which is the greatest risk factor for neurodegenerative diseases. In all major examples of these diseases there is strong evidence that mitochondrial dysfunction occurs early and acts causally in disease pathogenesis. Moreover, an impressive number of disease-specific proteins interact with mitochondria. Thus, therapies targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria, hold great promise.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N3d6c859938574e719ee2ec3b3ee47002
    31 N562fc75cbd0942e2926197e644811f60
    32 sg:journal.1018957
    33 schema:keywords DNA
    34 age-related neurodegenerative diseases
    35 basic mitochondrial processes
    36 cell death
    37 central role
    38 critical regulator
    39 death
    40 disease
    41 disease pathogenesis
    42 disease-related proteins
    43 disease-specific proteins
    44 dysfunction
    45 energy metabolism
    46 evidence
    47 example
    48 factors
    49 features
    50 free radical generation
    51 generation
    52 great promise
    53 greatest risk factor
    54 impressive number
    55 interaction
    56 key features
    57 lines
    58 lines of evidence
    59 major example
    60 metabolism
    61 mitochondria
    62 mitochondrial DNA
    63 mitochondrial dysfunction
    64 mitochondrial processes
    65 mutations
    66 neurodegeneration
    67 neurodegenerative diseases
    68 number
    69 oxidative stress
    70 pathogenesis
    71 process
    72 promise
    73 protein
    74 regulator
    75 risk factors
    76 role
    77 specific interactions
    78 stress
    79 strong evidence
    80 therapy
    81 schema:name Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
    82 schema:pagination 787-795
    83 schema:productId N0bc8f2dbd38d4a9c974d6158b85bd006
    84 N1c18d1e913a845ad8ad19cffce4a1e93
    85 N9c93d00d75dc4a80a8d49c8f5ef6a6cf
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003167107
    87 https://doi.org/10.1038/nature05292
    88 schema:sdDatePublished 2022-01-01T18:16
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N5b3454a41b8a4633a9eeac2f5d3a8b7f
    91 schema:url https://doi.org/10.1038/nature05292
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0bc8f2dbd38d4a9c974d6158b85bd006 schema:name pubmed_id
    96 schema:value 17051205
    97 rdf:type schema:PropertyValue
    98 N14a4f1fc93ac4f48b2dee902818ec473 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Neurodegenerative Diseases
    100 rdf:type schema:DefinedTerm
    101 N1c18d1e913a845ad8ad19cffce4a1e93 schema:name doi
    102 schema:value 10.1038/nature05292
    103 rdf:type schema:PropertyValue
    104 N27b658f08c554fa5bbaa0dd823ce07cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Animals
    106 rdf:type schema:DefinedTerm
    107 N3d6c859938574e719ee2ec3b3ee47002 schema:issueNumber 7113
    108 rdf:type schema:PublicationIssue
    109 N514c699649a648cead84c523b4cad016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Oxidative Stress
    111 rdf:type schema:DefinedTerm
    112 N562fc75cbd0942e2926197e644811f60 schema:volumeNumber 443
    113 rdf:type schema:PublicationVolume
    114 N5b3454a41b8a4633a9eeac2f5d3a8b7f schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N6943b62fb49847429e48187b77ff2b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Mitochondria
    118 rdf:type schema:DefinedTerm
    119 N7aca4987f27a405480e6ada0d4e36eb7 rdf:first sg:person.01121177226.73
    120 rdf:rest Nb2b5703aa3084bcf8a0cd800dd461574
    121 N8387dcdf928248e6b950ac6545714edc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Aging
    123 rdf:type schema:DefinedTerm
    124 N8629a3ad7bcb4bb889b68d9b3cbbe4af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Humans
    126 rdf:type schema:DefinedTerm
    127 N9c93d00d75dc4a80a8d49c8f5ef6a6cf schema:name dimensions_id
    128 schema:value pub.1003167107
    129 rdf:type schema:PropertyValue
    130 Nb2b5703aa3084bcf8a0cd800dd461574 rdf:first sg:person.012210722377.22
    131 rdf:rest rdf:nil
    132 Ned4a8bab3a8848979da83c4b31fa8a6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Apoptosis
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Biological Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Biochemistry and Cell Biology
    140 rdf:type schema:DefinedTerm
    141 sg:journal.1018957 schema:issn 0028-0836
    142 1476-4687
    143 schema:name Nature
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.01121177226.73 schema:affiliation grid-institutes:grid.5386.8
    147 schema:familyName Lin
    148 schema:givenName Michael T.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121177226.73
    150 rdf:type schema:Person
    151 sg:person.012210722377.22 schema:affiliation grid-institutes:grid.5386.8
    152 schema:familyName Beal
    153 schema:givenName M. Flint
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210722377.22
    155 rdf:type schema:Person
    156 sg:pub.10.1007/s004010100399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074895150
    157 https://doi.org/10.1007/s004010100399
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00415-002-1203-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053682837
    160 https://doi.org/10.1007/s00415-002-1203-5
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00439-005-0123-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028873048
    163 https://doi.org/10.1007/s00439-005-0123-8
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s10541-005-0102-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033245980
    166 https://doi.org/10.1007/s10541-005-0102-7
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/81834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006666875
    169 https://doi.org/10.1038/81834
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature01832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052100299
    172 https://doi.org/10.1038/nature01832
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature02661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001579376
    175 https://doi.org/10.1038/nature02661
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature04543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000695004
    178 https://doi.org/10.1038/nature04543
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ng1292-324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025942261
    181 https://doi.org/10.1038/ng1292-324
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ng1769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029731537
    184 https://doi.org/10.1038/ng1769
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ng1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050341751
    187 https://doi.org/10.1038/ng1778
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nn884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020240293
    190 https://doi.org/10.1038/nn884
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/1471-2202-4-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035179546
    193 https://doi.org/10.1186/1471-2202-4-16
    194 rdf:type schema:CreativeWork
    195 grid-institutes:grid.5386.8 schema:alternateName Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA
    196 schema:name Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Room F-610, 525 East 68th Street, 10021, New York, USA
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...