Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

Luc Thomas, Masamitsu Hayashi, Xin Jiang, Rai Moriya, Charles Rettner, Stuart S. P. Parkin

ABSTRACT

Magnetic domain walls, in which the magnetization direction varies continuously from one direction to another, have long been objects of considerable interest. New concepts for devices based on such domain walls are made possible by the direct manipulation of the walls using spin-polarized electrical current through the phenomenon of spin momentum transfer. Most experiments to date have considered the current-driven motion of domain walls under quasi-static conditions, whereas for technological applications, the walls must be moved on much shorter timescales. Here we show that the motion of domain walls under nanosecond-long current pulses is surprisingly sensitive to the pulse length. In particular, we find that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds. Using an analytical model and micromagnetic simulations, we show that this behaviour is connected to a current-induced oscillatory motion of the domain wall. The period is determined by the wall's mass and the slope of the confining potential. When the current is turned off during phases of the domain wall motion when it has enough momentum, the domain wall is driven out of the confining potential in the opposite direction to the flow of spin angular momentum. This dynamic amplification effect could be exploited in magnetic nanodevices based on domain wall motion. More... »

PAGES

197

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature05093

DOI

http://dx.doi.org/10.1038/nature05093

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044280391

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16971945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Luc", 
        "id": "sg:person.01011555363.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA", 
            "Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Masamitsu", 
        "id": "sg:person.01265526463.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Xin", 
        "id": "sg:person.01115300101.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115300101.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriya", 
        "givenName": "Rai", 
        "id": "sg:person.01170140433.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170140433.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rettner", 
        "givenName": "Charles", 
        "id": "sg:person.01236253633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Almaden", 
          "id": "https://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 650 Harry Road, San Jos\u00e9, California 95120, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parkin", 
        "givenName": "Stuart S. P.", 
        "id": "sg:person.07706243232.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1594841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008497141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018684130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028432339", 
          "https://doi.org/10.1038/nature03009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.024417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028530200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.024417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028530200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032107810", 
          "https://doi.org/10.1038/nature02441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032269022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032269022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.127204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032303895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040143496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.024455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040143496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.086601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047328087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10112-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047358232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.106601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.106601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048852340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2004.11.355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052126284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052656212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057938154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.1572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.117203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.117203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.619698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061116237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "Magnetic domain walls, in which the magnetization direction varies continuously from one direction to another, have long been objects of considerable interest. New concepts for devices based on such domain walls are made possible by the direct manipulation of the walls using spin-polarized electrical current through the phenomenon of spin momentum transfer. Most experiments to date have considered the current-driven motion of domain walls under quasi-static conditions, whereas for technological applications, the walls must be moved on much shorter timescales. Here we show that the motion of domain walls under nanosecond-long current pulses is surprisingly sensitive to the pulse length. In particular, we find that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds. Using an analytical model and micromagnetic simulations, we show that this behaviour is connected to a current-induced oscillatory motion of the domain wall. The period is determined by the wall's mass and the slope of the confining potential. When the current is turned off during phases of the domain wall motion when it has enough momentum, the domain wall is driven out of the confining potential in the opposite direction to the flow of spin angular momentum. This dynamic amplification effect could be exploited in magnetic nanodevices based on domain wall motion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature05093", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7108", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "443"
      }
    ], 
    "name": "Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length", 
    "pagination": "197", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d2ec5a9d466b96be8a491717e750452c677c577ef4a42a42dc06253cc1bd2f87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16971945"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature05093"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044280391"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature05093", 
      "https://app.dimensions.ai/details/publication/pub.1044280391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71686_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature05093"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature05093'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature05093'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature05093'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature05093'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature05093 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N8f2a06db814d4080a211f4cdab78129c
4 schema:citation sg:pub.10.1038/nature02441
5 sg:pub.10.1038/nature03009
6 https://doi.org/10.1016/0304-8853(96)00062-5
7 https://doi.org/10.1016/j.jmmm.2004.11.355
8 https://doi.org/10.1063/1.1594841
9 https://doi.org/10.1063/1.333530
10 https://doi.org/10.1103/physrevb.33.1572
11 https://doi.org/10.1103/physrevb.54.9353
12 https://doi.org/10.1103/physrevb.67.020403
13 https://doi.org/10.1103/physrevb.70.024417
14 https://doi.org/10.1103/physrevb.72.024455
15 https://doi.org/10.1103/physrevb.73.020403
16 https://doi.org/10.1103/physrevlett.92.077205
17 https://doi.org/10.1103/physrevlett.92.086601
18 https://doi.org/10.1103/physrevlett.93.127204
19 https://doi.org/10.1103/physrevlett.94.106601
20 https://doi.org/10.1103/physrevlett.95.026601
21 https://doi.org/10.1103/physrevlett.95.107204
22 https://doi.org/10.1103/physrevlett.95.117203
23 https://doi.org/10.1109/20.619698
24 https://doi.org/10.1209/epl/i2003-10112-5
25 https://doi.org/10.1209/epl/i2004-10452-6
26 schema:datePublished 2006-09
27 schema:datePublishedReg 2006-09-01
28 schema:description Magnetic domain walls, in which the magnetization direction varies continuously from one direction to another, have long been objects of considerable interest. New concepts for devices based on such domain walls are made possible by the direct manipulation of the walls using spin-polarized electrical current through the phenomenon of spin momentum transfer. Most experiments to date have considered the current-driven motion of domain walls under quasi-static conditions, whereas for technological applications, the walls must be moved on much shorter timescales. Here we show that the motion of domain walls under nanosecond-long current pulses is surprisingly sensitive to the pulse length. In particular, we find that the probability of dislodging a domain wall, confined to a pinning site in a permalloy nanowire, oscillates with the length of the current pulse, with a period of just a few nanoseconds. Using an analytical model and micromagnetic simulations, we show that this behaviour is connected to a current-induced oscillatory motion of the domain wall. The period is determined by the wall's mass and the slope of the confining potential. When the current is turned off during phases of the domain wall motion when it has enough momentum, the domain wall is driven out of the confining potential in the opposite direction to the flow of spin angular momentum. This dynamic amplification effect could be exploited in magnetic nanodevices based on domain wall motion.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N0464caff392c40e2b06c254b3d04dcf6
33 N1563fc692a344424baff55309f61eb74
34 sg:journal.1018957
35 schema:name Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length
36 schema:pagination 197
37 schema:productId N5c78b5886cb043fab5388d392e9cf3c9
38 N853de60dfaaa4abb9e7723415487c940
39 N890fd2698681491d8de48902fb931a2f
40 Nb82f4e7a3f4646fba960bcb7f5015b2d
41 Nc3abb72d5c284593926f11ecefabb7b7
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044280391
43 https://doi.org/10.1038/nature05093
44 schema:sdDatePublished 2019-04-11T12:58
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N60fc15c7be044d3b8993af5d1c6170e9
47 schema:url https://www.nature.com/articles/nature05093
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0464caff392c40e2b06c254b3d04dcf6 schema:volumeNumber 443
52 rdf:type schema:PublicationVolume
53 N1563fc692a344424baff55309f61eb74 schema:issueNumber 7108
54 rdf:type schema:PublicationIssue
55 N2497d185d83e4ac58353ba28d00aba4e rdf:first sg:person.01236253633.11
56 rdf:rest N7aead921479646d4a45e6677700316b7
57 N5c78b5886cb043fab5388d392e9cf3c9 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N5fb3111b744943508b1269a3d840e039 rdf:first sg:person.01115300101.31
61 rdf:rest N9fb00ff67a4a41ddbfeb6969bcf7801a
62 N60fc15c7be044d3b8993af5d1c6170e9 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N7aead921479646d4a45e6677700316b7 rdf:first sg:person.07706243232.47
65 rdf:rest rdf:nil
66 N853de60dfaaa4abb9e7723415487c940 schema:name dimensions_id
67 schema:value pub.1044280391
68 rdf:type schema:PropertyValue
69 N890fd2698681491d8de48902fb931a2f schema:name doi
70 schema:value 10.1038/nature05093
71 rdf:type schema:PropertyValue
72 N8f2a06db814d4080a211f4cdab78129c rdf:first sg:person.01011555363.08
73 rdf:rest N96a29ca9c5a34407a762ea65e85f6a28
74 N96a29ca9c5a34407a762ea65e85f6a28 rdf:first sg:person.01265526463.71
75 rdf:rest N5fb3111b744943508b1269a3d840e039
76 N9fb00ff67a4a41ddbfeb6969bcf7801a rdf:first sg:person.01170140433.21
77 rdf:rest N2497d185d83e4ac58353ba28d00aba4e
78 Nb82f4e7a3f4646fba960bcb7f5015b2d schema:name pubmed_id
79 schema:value 16971945
80 rdf:type schema:PropertyValue
81 Nc3abb72d5c284593926f11ecefabb7b7 schema:name readcube_id
82 schema:value d2ec5a9d466b96be8a491717e750452c677c577ef4a42a42dc06253cc1bd2f87
83 rdf:type schema:PropertyValue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
88 schema:name Interdisciplinary Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1018957 schema:issn 0090-0028
91 1476-4687
92 schema:name Nature
93 rdf:type schema:Periodical
94 sg:person.01011555363.08 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
95 schema:familyName Thomas
96 schema:givenName Luc
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011555363.08
98 rdf:type schema:Person
99 sg:person.01115300101.31 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
100 schema:familyName Jiang
101 schema:givenName Xin
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115300101.31
103 rdf:type schema:Person
104 sg:person.01170140433.21 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
105 schema:familyName Moriya
106 schema:givenName Rai
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170140433.21
108 rdf:type schema:Person
109 sg:person.01236253633.11 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
110 schema:familyName Rettner
111 schema:givenName Charles
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236253633.11
113 rdf:type schema:Person
114 sg:person.01265526463.71 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
115 schema:familyName Hayashi
116 schema:givenName Masamitsu
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71
118 rdf:type schema:Person
119 sg:person.07706243232.47 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
120 schema:familyName Parkin
121 schema:givenName Stuart S. P.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706243232.47
123 rdf:type schema:Person
124 sg:pub.10.1038/nature02441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032107810
125 https://doi.org/10.1038/nature02441
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028432339
128 https://doi.org/10.1038/nature03009
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jmmm.2004.11.355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052126284
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1594841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008497141
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.333530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057938154
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.33.1572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539246
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.67.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032269022
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.70.024417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028530200
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.72.024455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040143496
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.73.020403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075544
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.92.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052656212
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.92.086601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047328087
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.93.127204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032303895
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.94.106601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048852340
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.95.026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018684130
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.95.107204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405630
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.95.117203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830885
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/20.619698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061116237
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1209/epl/i2003-10112-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047358232
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
171 schema:name Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
172 IBM Almaden Research Center, 650 Harry Road, San José, California 95120, USA
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
175 schema:name IBM Almaden Research Center, 650 Harry Road, San José, California 95120, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...