Direct electronic measurement of the spin Hall effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-07

AUTHORS

S. O. Valenzuela, M. Tinkham

ABSTRACT

The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics. Among the different approaches for spin generation and manipulation, spin-orbit coupling--which couples the spin of an electron to its momentum--is attracting considerable interest. In a spin-orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel and in two-dimensional electron gases in semiconductor heterostructures. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage. More... »

PAGES

176

Journal

TITLE

Nature

ISSUE

7099

VOLUME

442

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature04937

DOI

http://dx.doi.org/10.1038/nature04937

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024306812

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16838016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valenzuela", 
        "givenName": "S. O.", 
        "id": "sg:person.0746667122.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746667122.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tinkham", 
        "givenName": "M.", 
        "id": "sg:person.07431171275.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431171275.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.94.047204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005002745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.047204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005002745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.052407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016973580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.052407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016973580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024013564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.056601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024013564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.045123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025995452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.045123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025995452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.166605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.166605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030456437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416713a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032410236", 
          "https://doi.org/10.1038/416713a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(71)90196-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034009317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(71)90196-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034009317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.126603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042895663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.126603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042895663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043534138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.073110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051162254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.073110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051162254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052242940", 
          "https://doi.org/10.1038/nphys009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052242940", 
          "https://doi.org/10.1038/nphys009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052075c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052075c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1357125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1830685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057825466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1841455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057826923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.5312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.5312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.5326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.5326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.196601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.196601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.196601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451238"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics. Among the different approaches for spin generation and manipulation, spin-orbit coupling--which couples the spin of an electron to its momentum--is attracting considerable interest. In a spin-orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel and in two-dimensional electron gases in semiconductor heterostructures. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature04937", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7099", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "442"
      }
    ], 
    "name": "Direct electronic measurement of the spin Hall effect", 
    "pagination": "176", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "73cd048045b9060ee72a1562c16a902563b49621464abc3866ad45c17196e840"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16838016"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature04937"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024306812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature04937", 
      "https://app.dimensions.ai/details/publication/pub.1024306812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71704_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature04937"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04937'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04937'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04937'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04937'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature04937 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf3b4f398b75743df83ab70e6aa07ab3b
4 schema:citation sg:pub.10.1038/416713a
5 sg:pub.10.1038/nphys009
6 https://doi.org/10.1016/0375-9601(71)90196-4
7 https://doi.org/10.1021/nl052075c
8 https://doi.org/10.1063/1.127097
9 https://doi.org/10.1063/1.1357125
10 https://doi.org/10.1063/1.1830685
11 https://doi.org/10.1063/1.1841455
12 https://doi.org/10.1103/physrevb.37.5312
13 https://doi.org/10.1103/physrevb.37.5326
14 https://doi.org/10.1103/physrevb.67.052407
15 https://doi.org/10.1103/physrevb.71.045123
16 https://doi.org/10.1103/physrevb.72.073110
17 https://doi.org/10.1103/physrevlett.55.1790
18 https://doi.org/10.1103/physrevlett.83.1834
19 https://doi.org/10.1103/physrevlett.85.393
20 https://doi.org/10.1103/physrevlett.92.126603
21 https://doi.org/10.1103/physrevlett.94.047204
22 https://doi.org/10.1103/physrevlett.94.196601
23 https://doi.org/10.1103/physrevlett.95.166605
24 https://doi.org/10.1103/physrevlett.96.056601
25 https://doi.org/10.1126/science.1065389
26 https://doi.org/10.1126/science.1087128
27 https://doi.org/10.1126/science.1105514
28 schema:datePublished 2006-07
29 schema:datePublishedReg 2006-07-01
30 schema:description The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics. Among the different approaches for spin generation and manipulation, spin-orbit coupling--which couples the spin of an electron to its momentum--is attracting considerable interest. In a spin-orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel and in two-dimensional electron gases in semiconductor heterostructures. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N84c3eff58d1245439883bef0c617496e
35 Nac0cee8166e54cb2963c6f858088e3dc
36 sg:journal.1018957
37 schema:name Direct electronic measurement of the spin Hall effect
38 schema:pagination 176
39 schema:productId N076293475fba4a759df092f85ae8b8ca
40 N0e7cffc6796e49148e4bf593358e75e6
41 N6ffbd52a56b24dc0b2bddaa520cb662e
42 N9e85af861ad74c0cb6567e537951bb32
43 Nd85677eaf96c4d4ab42318eeb265bb5c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306812
45 https://doi.org/10.1038/nature04937
46 schema:sdDatePublished 2019-04-11T13:00
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Na6742add39bb4ab98c08137e4a29e8b3
49 schema:url https://www.nature.com/articles/nature04937
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N076293475fba4a759df092f85ae8b8ca schema:name doi
54 schema:value 10.1038/nature04937
55 rdf:type schema:PropertyValue
56 N0e7cffc6796e49148e4bf593358e75e6 schema:name nlm_unique_id
57 schema:value 0410462
58 rdf:type schema:PropertyValue
59 N6ffbd52a56b24dc0b2bddaa520cb662e schema:name dimensions_id
60 schema:value pub.1024306812
61 rdf:type schema:PropertyValue
62 N84c3eff58d1245439883bef0c617496e schema:volumeNumber 442
63 rdf:type schema:PublicationVolume
64 N9e85af861ad74c0cb6567e537951bb32 schema:name readcube_id
65 schema:value 73cd048045b9060ee72a1562c16a902563b49621464abc3866ad45c17196e840
66 rdf:type schema:PropertyValue
67 Na6742add39bb4ab98c08137e4a29e8b3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nac0cee8166e54cb2963c6f858088e3dc schema:issueNumber 7099
70 rdf:type schema:PublicationIssue
71 Nb127707cb3c6459981e998ff476a62b7 rdf:first sg:person.07431171275.26
72 rdf:rest rdf:nil
73 Nd85677eaf96c4d4ab42318eeb265bb5c schema:name pubmed_id
74 schema:value 16838016
75 rdf:type schema:PropertyValue
76 Nf3b4f398b75743df83ab70e6aa07ab3b rdf:first sg:person.0746667122.53
77 rdf:rest Nb127707cb3c6459981e998ff476a62b7
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1018957 schema:issn 0090-0028
85 1476-4687
86 schema:name Nature
87 rdf:type schema:Periodical
88 sg:person.07431171275.26 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
89 schema:familyName Tinkham
90 schema:givenName M.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07431171275.26
92 rdf:type schema:Person
93 sg:person.0746667122.53 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
94 schema:familyName Valenzuela
95 schema:givenName S. O.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746667122.53
97 rdf:type schema:Person
98 sg:pub.10.1038/416713a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410236
99 https://doi.org/10.1038/416713a
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nphys009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052242940
102 https://doi.org/10.1038/nphys009
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0375-9601(71)90196-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034009317
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/nl052075c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216513
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.127097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691189
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.1357125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698402
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1063/1.1830685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825466
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1063/1.1841455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057826923
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.37.5312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545669
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.37.5326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545670
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.67.052407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016973580
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.71.045123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025995452
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.72.073110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051162254
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.83.1834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043534138
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.85.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822119
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.92.126603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042895663
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.94.047204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005002745
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.94.196601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830343
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.95.166605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030456437
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.96.056601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024013564
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.1087128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448358
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.1105514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451238
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
149 schema:name Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...