Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-06

AUTHORS

Zoran Hadzibabic, Peter Krüger, Marc Cheneau, Baptiste Battelier, Jean Dalibard

ABSTRACT

Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems. More... »

PAGES

1118

References to SciGraph publications

  • 2005-02. Superfluid to Mott insulator transition in one, two, and three dimensions in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 2002-09. The Two-Dimensional Bose–Einstein Condensate in JOURNAL OF LOW TEMPERATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04851

    DOI

    http://dx.doi.org/10.1038/nature04851

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031218791

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16810249


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hadzibabic", 
            "givenName": "Zoran", 
            "id": "sg:person.0667170664.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170664.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kr\u00fcger", 
            "givenName": "Peter", 
            "id": "sg:person.01131614714.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131614714.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheneau", 
            "givenName": "Marc", 
            "id": "sg:person.01224512325.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224512325.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Battelier", 
            "givenName": "Baptiste", 
            "id": "sg:person.01033337527.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033337527.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Laboratoire Kastler Brossel, Ecole Normale Sup\u00e9rieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dalibard", 
            "givenName": "Jean", 
            "id": "sg:person.01025140266.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025140266.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1019632502660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000466818", 
              "https://doi.org/10.1023/a:1019632502660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.020404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003399425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.020404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003399425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10909-005-2273-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007912193", 
              "https://doi.org/10.1007/s10909-005-2273-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.173003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020147623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.173003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020147623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.180403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021164435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.180403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021164435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.010406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021830283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.010406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021830283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024085988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024085988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.070407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024405770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.070407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024405770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.190403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026146647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.190403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026146647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2002-00532-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029499860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0510276103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037831717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500830500256587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038167046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.040404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038977364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.040404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038977364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.130402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042747979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.130402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042747979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-4075/38/3/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050111140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp4:2004116001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056985927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3719/6/7/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058966973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.158.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.158.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.44.7439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060484406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.44.7439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060484406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.8811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060571544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.8811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060571544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.39.1201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.39.1201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060781653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.1727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.40.1727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060782589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.47.1542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.4545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060818501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.81.4545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060818501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1058149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062444393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.275.5300.637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062555647"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-06", 
        "datePublishedReg": "2006-06-01", 
        "description": "Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1038/nature04851", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7097", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "441"
          }
        ], 
        "name": "Berezinskii\u2013Kosterlitz\u2013Thouless crossover in a trapped atomic gas", 
        "pagination": "1118", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "94b8efa63512093780a395eda1de48606e2785bbbd660b4cf97e65cf7c34dc9d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16810249"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04851"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031218791"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04851", 
          "https://app.dimensions.ai/details/publication/pub.1031218791"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71701_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04851"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04851'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04851'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04851'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04851'


     

    This table displays all metadata directly associated to this object as RDF triples.

    180 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04851 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Ndabed0d53d0b4aa48c7b4dc3898a376b
    4 schema:citation sg:pub.10.1007/s10909-005-2273-4
    5 sg:pub.10.1023/a:1019632502660
    6 https://doi.org/10.1051/jp4:2004116001
    7 https://doi.org/10.1073/pnas.0510276103
    8 https://doi.org/10.1080/09500830500256587
    9 https://doi.org/10.1088/0022-3719/6/7/010
    10 https://doi.org/10.1088/0953-4075/38/3/007
    11 https://doi.org/10.1103/physrev.158.383
    12 https://doi.org/10.1103/physreva.44.7439
    13 https://doi.org/10.1103/physrevb.49.8811
    14 https://doi.org/10.1103/physrevlett.17.1133
    15 https://doi.org/10.1103/physrevlett.39.1201
    16 https://doi.org/10.1103/physrevlett.40.1727
    17 https://doi.org/10.1103/physrevlett.47.1542
    18 https://doi.org/10.1103/physrevlett.81.4545
    19 https://doi.org/10.1103/physrevlett.84.2551
    20 https://doi.org/10.1103/physrevlett.87.130402
    21 https://doi.org/10.1103/physrevlett.88.070407
    22 https://doi.org/10.1103/physrevlett.91.010406
    23 https://doi.org/10.1103/physrevlett.92.040404
    24 https://doi.org/10.1103/physrevlett.92.173003
    25 https://doi.org/10.1103/physrevlett.93.180403
    26 https://doi.org/10.1103/physrevlett.95.190403
    27 https://doi.org/10.1103/physrevlett.96.020404
    28 https://doi.org/10.1126/science.1058149
    29 https://doi.org/10.1126/science.275.5300.637
    30 https://doi.org/10.1209/epl/i2002-00532-1
    31 schema:datePublished 2006-06
    32 schema:datePublishedReg 2006-06-01
    33 schema:description Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.
    34 schema:genre non_research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N054535882d334a1391b022fbf0ba4bf1
    38 N59a805d219724b82a7d90f4dc7baaf09
    39 sg:journal.1018957
    40 schema:name Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas
    41 schema:pagination 1118
    42 schema:productId N5619e6fbd3214231861961a6538ad391
    43 N74bda3f711a8424fbb5b899fdfcfadd5
    44 N8b2991e74fa141e98696ad506efe62f1
    45 Nb429e22fb75145ac99f4b0dbaa1dd73c
    46 Nd339f6f027be44b2a5a8635a45e604f1
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031218791
    48 https://doi.org/10.1038/nature04851
    49 schema:sdDatePublished 2019-04-11T13:00
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N82b4701f9132446fbb99891ee035c592
    52 schema:url https://www.nature.com/articles/nature04851
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N02faa34435c944c395c7edb893875220 rdf:first sg:person.01025140266.24
    57 rdf:rest rdf:nil
    58 N054535882d334a1391b022fbf0ba4bf1 schema:volumeNumber 441
    59 rdf:type schema:PublicationVolume
    60 N5619e6fbd3214231861961a6538ad391 schema:name pubmed_id
    61 schema:value 16810249
    62 rdf:type schema:PropertyValue
    63 N59a805d219724b82a7d90f4dc7baaf09 schema:issueNumber 7097
    64 rdf:type schema:PublicationIssue
    65 N74bda3f711a8424fbb5b899fdfcfadd5 schema:name dimensions_id
    66 schema:value pub.1031218791
    67 rdf:type schema:PropertyValue
    68 N7b7c23ce4c85444db3d8f8abc5be9c77 rdf:first sg:person.01131614714.12
    69 rdf:rest Na6cfadd72036445493dd13a4c1429a1a
    70 N82b4701f9132446fbb99891ee035c592 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N8b2991e74fa141e98696ad506efe62f1 schema:name doi
    73 schema:value 10.1038/nature04851
    74 rdf:type schema:PropertyValue
    75 Na6cfadd72036445493dd13a4c1429a1a rdf:first sg:person.01224512325.59
    76 rdf:rest Nb6e09e10132c474d8dcadcfd50d9389f
    77 Nb429e22fb75145ac99f4b0dbaa1dd73c schema:name readcube_id
    78 schema:value 94b8efa63512093780a395eda1de48606e2785bbbd660b4cf97e65cf7c34dc9d
    79 rdf:type schema:PropertyValue
    80 Nb6e09e10132c474d8dcadcfd50d9389f rdf:first sg:person.01033337527.63
    81 rdf:rest N02faa34435c944c395c7edb893875220
    82 Nd339f6f027be44b2a5a8635a45e604f1 schema:name nlm_unique_id
    83 schema:value 0410462
    84 rdf:type schema:PropertyValue
    85 Ndabed0d53d0b4aa48c7b4dc3898a376b rdf:first sg:person.0667170664.43
    86 rdf:rest N7b7c23ce4c85444db3d8f8abc5be9c77
    87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Physical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1018957 schema:issn 0090-0028
    94 1476-4687
    95 schema:name Nature
    96 rdf:type schema:Periodical
    97 sg:person.01025140266.24 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    98 schema:familyName Dalibard
    99 schema:givenName Jean
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025140266.24
    101 rdf:type schema:Person
    102 sg:person.01033337527.63 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    103 schema:familyName Battelier
    104 schema:givenName Baptiste
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033337527.63
    106 rdf:type schema:Person
    107 sg:person.01131614714.12 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    108 schema:familyName Krüger
    109 schema:givenName Peter
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131614714.12
    111 rdf:type schema:Person
    112 sg:person.01224512325.59 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    113 schema:familyName Cheneau
    114 schema:givenName Marc
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224512325.59
    116 rdf:type schema:Person
    117 sg:person.0667170664.43 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    118 schema:familyName Hadzibabic
    119 schema:givenName Zoran
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170664.43
    121 rdf:type schema:Person
    122 sg:pub.10.1007/s10909-005-2273-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007912193
    123 https://doi.org/10.1007/s10909-005-2273-4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1023/a:1019632502660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466818
    126 https://doi.org/10.1023/a:1019632502660
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1051/jp4:2004116001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056985927
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1073/pnas.0510276103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037831717
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1080/09500830500256587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038167046
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1088/0022-3719/6/7/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966973
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1088/0953-4075/38/3/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050111140
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrev.158.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435582
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physreva.44.7439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060484406
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevb.49.8811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571544
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.39.1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060781653
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.40.1727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782589
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrevlett.47.1542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786544
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.81.4545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818501
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevlett.84.2551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024085988
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.87.130402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042747979
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevlett.88.070407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024405770
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevlett.91.010406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021830283
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevlett.92.040404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038977364
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevlett.92.173003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020147623
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevlett.93.180403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021164435
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevlett.95.190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026146647
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevlett.96.020404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003399425
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1126/science.1058149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444393
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1126/science.275.5300.637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555647
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1209/epl/i2002-00532-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029499860
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.15140.31 schema:alternateName École Normale Supérieure de Lyon
    179 schema:name Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France
    180 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...