Weak pairwise correlations imply strongly correlated network states in a neural population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04

AUTHORS

Elad Schneidman, Michael J. Berry, Ronen Segev, William Bialek

ABSTRACT

Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons. More... »

PAGES

1007

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature04701

DOI

http://dx.doi.org/10.1038/nature04701

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013920925

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16625187


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guinea Pigs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retina", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Urodela", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Joseph Henry Laboratories of Physics,", 
            "Department of Molecular Biology, and", 
            "Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneidman", 
        "givenName": "Elad", 
        "id": "sg:person.0711233140.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711233140.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Biology, and"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berry", 
        "givenName": "Michael J.", 
        "id": "sg:person.01246206152.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246206152.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Molecular Biology, and"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Segev", 
        "givenName": "Ronen", 
        "id": "sg:person.01063644352.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063644352.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Joseph Henry Laboratories of Physics,", 
            "Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bialek", 
        "givenName": "William", 
        "id": "sg:person.0576543601.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576543601.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182758", 
          "https://doi.org/10.1038/nature03689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182758", 
          "https://doi.org/10.1038/nature03689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182758", 
          "https://doi.org/10.1038/nature03689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182758", 
          "https://doi.org/10.1038/nature03689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.26.15706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002575633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976699300016827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003725815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008076850", 
          "https://doi.org/10.1038/2217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008076850", 
          "https://doi.org/10.1038/2217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.18.10101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008932027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009250243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.238701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009250243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976604773717559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009912348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/370140a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010672878", 
          "https://doi.org/10.1038/370140a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2005.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010992661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(03)00004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014399276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(90)90144-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014653718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(90)90144-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014653718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(67)86597-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017034400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019498862", 
          "https://doi.org/10.1038/35011540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019498862", 
          "https://doi.org/10.1038/35011540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(94)90030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024641309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(94)90030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024641309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026385003", 
          "https://doi.org/10.1038/nn1323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026385003", 
          "https://doi.org/10.1038/nn1323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.01175.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031971108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.24.1.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.79.8.2554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038762424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.4.1693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042360588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386069a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043652318", 
          "https://doi.org/10.1038/386069a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976600300014872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047362494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177692379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047514421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976602753284455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051302489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3057866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057902688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.61115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5239.1207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5283.1868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5345.1950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3749885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3755256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062621376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.21-05-01676.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074775300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.23-28-09349.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076582170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature04701", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2507055", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7087", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "440"
      }
    ], 
    "name": "Weak pairwise correlations imply strongly correlated network states in a neural population", 
    "pagination": "1007", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4250b1b28e53f16439f3125a4f725006766a07f50e80ac0e82b67e5eb2889818"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16625187"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature04701"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013920925"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature04701", 
      "https://app.dimensions.ai/details/publication/pub.1013920925"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71698_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature04701"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04701'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04701'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04701'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04701'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      77 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature04701 schema:about N0fdf57f4164e4440a8ced5a8e37f59b0
2 N1d2ed5bb260c497b88ba1d37eb4f5bb2
3 N3fe08ce395c1463dae651863b7e19dda
4 N6ecc90b22f1b4fbebf4db8399da5bdfe
5 N8bf19d6a70b941b7b43c846cbf357774
6 N90a1551740a8457d89cef963cfedfbe2
7 N9e33fb0f82a34202a34a963ef788983f
8 Nbc7bf87742c24f678c9bd0242e65a305
9 Nbf52915a18d44f54af0fd9f908d2a630
10 Nd4add07884df4c73bcc0d41213bb2e0d
11 anzsrc-for:11
12 anzsrc-for:1109
13 schema:author N63b640dceb3a42129d975e5595590c38
14 schema:citation sg:pub.10.1038/2217
15 sg:pub.10.1038/35011540
16 sg:pub.10.1038/370140a0
17 sg:pub.10.1038/386069a0
18 sg:pub.10.1038/nature03689
19 sg:pub.10.1038/nn1323
20 sg:pub.10.1038/nrg1272
21 https://doi.org/10.1002/0471200611
22 https://doi.org/10.1016/0042-6989(90)90144-a
23 https://doi.org/10.1016/0165-0270(94)90030-2
24 https://doi.org/10.1016/j.neuron.2005.03.026
25 https://doi.org/10.1016/s0006-3495(67)86597-4
26 https://doi.org/10.1016/s0896-6273(03)00004-7
27 https://doi.org/10.1017/cbo9780511623257
28 https://doi.org/10.1063/1.3057866
29 https://doi.org/10.1073/pnas.79.8.2554
30 https://doi.org/10.1073/pnas.95.25.14863
31 https://doi.org/10.1073/pnas.95.26.15706
32 https://doi.org/10.1073/pnas.97.18.10101
33 https://doi.org/10.1073/pnas.98.4.1693
34 https://doi.org/10.1103/physrev.106.620
35 https://doi.org/10.1103/physrevlett.80.197
36 https://doi.org/10.1103/physrevlett.91.238701
37 https://doi.org/10.1109/18.61115
38 https://doi.org/10.1126/science.270.5239.1207
39 https://doi.org/10.1126/science.273.5283.1868
40 https://doi.org/10.1126/science.278.5345.1950
41 https://doi.org/10.1126/science.3749885
42 https://doi.org/10.1126/science.3755256
43 https://doi.org/10.1146/annurev.neuro.24.1.139
44 https://doi.org/10.1152/jn.01175.2004
45 https://doi.org/10.1162/089976600300014872
46 https://doi.org/10.1162/089976602753284455
47 https://doi.org/10.1162/089976604773717559
48 https://doi.org/10.1162/089976699300016827
49 https://doi.org/10.1214/aoms/1177692379
50 https://doi.org/10.1523/jneurosci.21-05-01676.2001
51 https://doi.org/10.1523/jneurosci.23-28-09349.2003
52 schema:datePublished 2006-04
53 schema:datePublishedReg 2006-04-01
54 schema:description Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher-order interactions among large groups of elements have an important role. Here we show, in the vertebrate retina, that weak correlations between pairs of neurons coexist with strongly collective behaviour in the responses of ten or more neurons. We find that this collective behaviour is described quantitatively by models that capture the observed pairwise correlations but assume no higher-order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behaviour. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N25e1196b34ff45e79c85a6c47059f72b
59 Nb8cc6670c8a641e4b12402017fe94c89
60 sg:journal.1018957
61 schema:name Weak pairwise correlations imply strongly correlated network states in a neural population
62 schema:pagination 1007
63 schema:productId N23162043e95d48e7b02dd85a219ae877
64 N248171e87aa54a0cb0b788999c65b2a1
65 Naa6a0fedfe79426babfe37d8a21439eb
66 Nb0d23d1e794f47b88cbe55950a169c52
67 Ne0e22b8d70af4e3e8874d8725b9d8a85
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
69 https://doi.org/10.1038/nature04701
70 schema:sdDatePublished 2019-04-11T12:59
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nb717a0edf21e480bbd0c084190a2c644
73 schema:url https://www.nature.com/articles/nature04701
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0fdf57f4164e4440a8ced5a8e37f59b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Retina
79 rdf:type schema:DefinedTerm
80 N1d2ed5bb260c497b88ba1d37eb4f5bb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Neurons
82 rdf:type schema:DefinedTerm
83 N23162043e95d48e7b02dd85a219ae877 schema:name readcube_id
84 schema:value 4250b1b28e53f16439f3125a4f725006766a07f50e80ac0e82b67e5eb2889818
85 rdf:type schema:PropertyValue
86 N248171e87aa54a0cb0b788999c65b2a1 schema:name doi
87 schema:value 10.1038/nature04701
88 rdf:type schema:PropertyValue
89 N25e1196b34ff45e79c85a6c47059f72b schema:volumeNumber 440
90 rdf:type schema:PublicationVolume
91 N358d6be2084743feb13c8511440346a0 schema:name Department of Molecular Biology, and
92 rdf:type schema:Organization
93 N3fe08ce395c1463dae651863b7e19dda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Guinea Pigs
95 rdf:type schema:DefinedTerm
96 N4d1b253788ed4a029d5d70d7378c1e59 rdf:first sg:person.01246206152.39
97 rdf:rest N8371459a90a546ff969c1f7df7ac43ab
98 N63b640dceb3a42129d975e5595590c38 rdf:first sg:person.0711233140.11
99 rdf:rest N4d1b253788ed4a029d5d70d7378c1e59
100 N6ecc90b22f1b4fbebf4db8399da5bdfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Poisson Distribution
102 rdf:type schema:DefinedTerm
103 N70e1dfe1e3ae4c91a76687935df98f73 schema:name Department of Molecular Biology, and
104 rdf:type schema:Organization
105 N8371459a90a546ff969c1f7df7ac43ab rdf:first sg:person.01063644352.32
106 rdf:rest Ne5e2a92ffa7c4f4ea661163781694fc5
107 N8bf19d6a70b941b7b43c846cbf357774 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Entropy
109 rdf:type schema:DefinedTerm
110 N90a1551740a8457d89cef963cfedfbe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Neurological
112 rdf:type schema:DefinedTerm
113 N9e33fb0f82a34202a34a963ef788983f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Cerebral Cortex
115 rdf:type schema:DefinedTerm
116 Naa6a0fedfe79426babfe37d8a21439eb schema:name dimensions_id
117 schema:value pub.1013920925
118 rdf:type schema:PropertyValue
119 Nb0d23d1e794f47b88cbe55950a169c52 schema:name pubmed_id
120 schema:value 16625187
121 rdf:type schema:PropertyValue
122 Nb717a0edf21e480bbd0c084190a2c644 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nb8cc6670c8a641e4b12402017fe94c89 schema:issueNumber 7087
125 rdf:type schema:PublicationIssue
126 Nbc7bf87742c24f678c9bd0242e65a305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Urodela
128 rdf:type schema:DefinedTerm
129 Nbf52915a18d44f54af0fd9f908d2a630 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Action Potentials
131 rdf:type schema:DefinedTerm
132 Nd4add07884df4c73bcc0d41213bb2e0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Animals
134 rdf:type schema:DefinedTerm
135 Ne0e22b8d70af4e3e8874d8725b9d8a85 schema:name nlm_unique_id
136 schema:value 0410462
137 rdf:type schema:PropertyValue
138 Ne5e2a92ffa7c4f4ea661163781694fc5 rdf:first sg:person.0576543601.68
139 rdf:rest rdf:nil
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
144 schema:name Neurosciences
145 rdf:type schema:DefinedTerm
146 sg:grant.2507055 http://pending.schema.org/fundedItem sg:pub.10.1038/nature04701
147 rdf:type schema:MonetaryGrant
148 sg:journal.1018957 schema:issn 0090-0028
149 1476-4687
150 schema:name Nature
151 rdf:type schema:Periodical
152 sg:person.01063644352.32 schema:affiliation N70e1dfe1e3ae4c91a76687935df98f73
153 schema:familyName Segev
154 schema:givenName Ronen
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063644352.32
156 rdf:type schema:Person
157 sg:person.01246206152.39 schema:affiliation N358d6be2084743feb13c8511440346a0
158 schema:familyName Berry
159 schema:givenName Michael J.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246206152.39
161 rdf:type schema:Person
162 sg:person.0576543601.68 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
163 schema:familyName Bialek
164 schema:givenName William
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576543601.68
166 rdf:type schema:Person
167 sg:person.0711233140.11 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
168 schema:familyName Schneidman
169 schema:givenName Elad
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711233140.11
171 rdf:type schema:Person
172 sg:pub.10.1038/2217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008076850
173 https://doi.org/10.1038/2217
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/35011540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019498862
176 https://doi.org/10.1038/35011540
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/370140a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010672878
179 https://doi.org/10.1038/370140a0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/386069a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043652318
182 https://doi.org/10.1038/386069a0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature03689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182758
185 https://doi.org/10.1038/nature03689
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nn1323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026385003
188 https://doi.org/10.1038/nn1323
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
191 https://doi.org/10.1038/nrg1272
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0042-6989(90)90144-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653718
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0165-0270(94)90030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024641309
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.neuron.2005.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010992661
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0006-3495(67)86597-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017034400
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0896-6273(03)00004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014399276
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1017/cbo9780511623257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664010
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.3057866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057902688
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.79.8.2554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038762424
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.95.26.15706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002575633
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.97.18.10101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008932027
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1073/pnas.98.4.1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360588
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.80.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817000
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.91.238701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009250243
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/18.61115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100441
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.270.5239.1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551648
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.273.5283.1868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554227
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.278.5345.1950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558970
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.3749885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621349
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.3755256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621376
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1146/annurev.neuro.24.1.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103946
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1152/jn.01175.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031971108
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1162/089976600300014872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047362494
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1162/089976602753284455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051302489
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1162/089976604773717559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009912348
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1162/089976699300016827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003725815
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1214/aoms/1177692379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047514421
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1523/jneurosci.21-05-01676.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074775300
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1523/jneurosci.23-28-09349.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076582170
254 rdf:type schema:CreativeWork
255 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
256 schema:name Department of Molecular Biology, and
257 Joseph Henry Laboratories of Physics,
258 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...