Folding DNA to create nanoscale shapes and patterns View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

Paul W. K. Rothemund

ABSTRACT

'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex). More... »

PAGES

297

Journal

TITLE

Nature

ISSUE

7082

VOLUME

440

Related Patents

  • Nucleic Acid Enzyme Biosensors For Ions
  • Materials Based On Filamentous Peptide - Or Protein-Based Structures
  • Single Molecule Loading Methods And Compositions
  • Engineering Dna Assembly In Vivo And Methods Of Making And Using The Reverse Transcriptase Technology
  • High-Throughput And Highly Multiplexed Imaging With Programmable Nucleic Acid Probes
  • Standard Dna-Origami-Based
  • Internal Structured Self Assembling Liposomes
  • Single Molecule Loading Methods And Compositions
  • Standard Dna - Origami - Base
  • Engineered Lectin Oligomers With Antiviral Activity
  • Biomolecular Self-Assembly
  • Nucleic Acid Construct And Method Of Preparing Nanoparticle Using The Same
  • Pkr Activation Via Hybridization Chain Reaction
  • Method Of Combing An Elongated Molecule
  • Rna Nanoparticles And Methods Of Use
  • Novel Compounds And Derivatization Of Dnas And Rnas On The Nucleobases Of Pyrimidines For Function, Structure, And Therapeutics
  • Methods Of Making Nucleic Acid Nanostructures
  • Lateral Flow Devices
  • Nucleic Acid Nanotube Liquid Crystals And Use For Nmr Structure Determination Of Membrane Proteins
  • Fluorescence Based Biosensor
  • Sensor Housing And Reagent Chemistry
  • High-Q Resonators Assembly
  • Self-Assembly Of Dna Origami: A New Diganostic Tool
  • Nanocrystals Containing Cdte Core With Cds And Zns Coatings
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Slips Surface Based On Metal-Containing Compound
  • Slippery Liquid-Infused Porous Surfaces And Biological Applications Thereof
  • Compositions And Methods Relating To Complex Nucleic Acid Nanostructures
  • Slippery Self-Lubricating Polymer Surfaces
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Polypeptides For Use In Self-Assembling Protein Nanostructures
  • Nucleic Acid Nanostructures
  • Wireframe Nanostructures
  • Triggered Molecular Geometry Based Bioimaging Probes
  • Method Of Combing A Nucleic Acid
  • Nucleic Acid Nanotube Liquid Crystals And Use For Nmr Structure Determination Of Membrane Proteins
  • Synthetic Glycosyl Hydrolase Based On Dna Nanoweaves
  • Nanocomposite Structures And Related Methods And Systems
  • Methods Of Serial Assembly Of Dna Bricks Into Larger Structures
  • Nucleic Acid Construct And Method Of Preparing Nanoparticle Using The Same
  • Slippery Liquid-Infused Porous Surfaces Having Improved Stability
  • Streptavidin Macromolecular Adaptor And Complexes Thereof
  • Nucleic Acid-Based Linkers For Detecting And Measuring Interactions
  • Zero-Mode Waveguides With Non-Reflecting Walls
  • Aptamer-Based Colorimetric Sensor Systems
  • Nucleic Acid Based Fluorescent Sensor For Copper Detection
  • Small Conditional Rnas
  • Scalable Biotechnological Production Of Dna Single Strand Molecules Of Defined Sequence And Length
  • Multidimensional Supramolecular Structures Essentially Made Of Assembled I-Motif Tetramers
  • Nucleic Acid Nanostructure Barcode Probes
  • Multifunctional Nucleic Acid Nano-Structures
  • Novel Compounds And Synthesis Of Tellurium-Derivatized Oligonucleotides For Structural And Functional Studies
  • Fluorescent Sensor For Mercury
  • Method And Apparatus For Controlling Properties Of Nucleic Acid Nanostructures
  • Nucleic Acid Based Fluorescent Sensor For Mercury Detection
  • Self-Assembling Polypeptide Polyhedra
  • Nanopore Functionality Control
  • Wireframe Nanostructures
  • Self-Assembly Of Dna Origami: A New Diagnostic Tool
  • Versatile Nucleic Acid Hairpin Motif For Programming Biomolecular Self-Assembly Pathways
  • Signal Activatable Constructs And Related Components Compositions Methods And Systems
  • Nucleic Acid Nanostructure Barcode Probes
  • Nanoscale Apertures Having Islands Of Functionality
  • Method And Materials For The Cooperative Hybridization Of Oligonucleotides
  • Non-Immunogenic And Nuclease Resistant Nucleic Acid Origami Devices And Compositions Thereof
  • Method Of Protein Nanostructure Fabrication
  • Fluorescence Based Biosensor
  • Multifunctional Nucleic Acid Nano-Structures
  • Nucleic Acid Nanostructure Barcode Probes
  • Compositions And Methods For Polynucleotide Sequencing
  • Membrane-Spanning Nanopores
  • Nucleic Acid Nanotube Liquid Crystals
  • Nucleic Acid Enzyme Biosensors For Ions
  • Dna-Linked Nanoparticle Building Blocks For Nanostructure Assembly And Methods Of Producing The Same
  • High-Q Resonators Assembly
  • Self-Assembled Polynucleotide Structure
  • Spatial Sequestration Of Dynamic Nucleic Acid Circuits
  • Compositions And Methods For Self-Assembly Of Polymers With Complementary Macroscopic And Microscopic Scale Units
  • Method For Preparing Zero-Mode Waveguide Arrays With Coated Walls
  • Multifunctional Nucleic Acid Nano-Structures
  • Method Of Combing A Nucleic Acid
  • Aptamer Based Colorimetric Sensor Systems
  • Aptamer- And Nucleic Acid Enzyme-Based Systems For Simultaneous Detection Of Multiple Analytes
  • Multidimensional Supramolecular Structures Essentially Made Of Assembled I-Motif Tetramers
  • Molecular Identification With Sub-Nanometer Localization Accuracy
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Slippery Surfaces With High Pressure Stability, Optical Transparency, And Self-Healing Characteristics
  • Method Of Combing A Nucleic Acid
  • Hybridization Chain Reaction Amplification For In Situ Imaging
  • Methods For Producing Zmws With Islands Of Functionality
  • Method For Forming Nanoparticles Having Predetermined Shapes
  • Exonuclease Resistant Polynucleotide And Related Duplex Polynucleotides, Constructs, Compositions, Methods And Systems
  • General Method For Designing Self-Assembling Protein Nanomaterials
  • Lipid-Coated Nucleic Acid Nanostructures Of Defined Shape
  • Method Of Combing An Elongated Molecule
  • Polynucleotides And Related Nanoassemblies, Structures, Arrangements, Methods And Systems
  • Triggered Rnai
  • Method Of Applying An Elongated Molecule To A Surface
  • Selective Nucleic Acid Amplification From Nucleic Acid Pools
  • Amphiphilic Substances And Functionalized Lipid Vesicles Including The Same
  • Targeting Domain And Related Signal Activated Molecular Delivery
  • Compositions And Methods Relating To Nucleic Acid Nano- And Micro-Technology
  • Materials And Methods For Stabilizing Nanoparticles In Salt Solutions
  • Node Polypeptides For Nanostructure Assembly
  • Nucleic Acid Based Nanopores Or Transmembrane Channels And Their Uses
  • Triorthogonal Reagents For Dual Protein Conjugation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04586

    DOI

    http://dx.doi.org/10.1038/nature04586

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028635122

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16541064


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Art", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteriophage M13", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biopolymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Departments of Computer Science and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rothemund", 
            "givenName": "Paul W. K.", 
            "id": "sg:person.0655741071.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741071.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-5193(82)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002849846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020553", 
              "https://doi.org/10.1038/35098059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020553", 
              "https://doi.org/10.1038/35098059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004978828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/344524a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012999885", 
              "https://doi.org/10.1038/344524a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420007848.sec1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014856226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1076768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015815962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1032954100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022757322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048635+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048635+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350631a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034775610", 
              "https://doi.org/10.1038/350631a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45465-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039883174", 
              "https://doi.org/10.1007/3-540-45465-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1990.10507829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042887966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1089389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047702592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/68/1/r05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052554623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ange.200503797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052822151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ange.200503797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052822151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00064a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055159372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00084a006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055705408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.113809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057665428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1092740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1104686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1962191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062515366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/dimacs/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097022560"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-03", 
        "datePublishedReg": "2006-03-01", 
        "description": "'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature04586", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7082", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "440"
          }
        ], 
        "name": "Folding DNA to create nanoscale shapes and patterns", 
        "pagination": "297", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8868ab4818d90f2191fd8eba5cc5ba4fd04e710f3f18ca259d285dca7b483c74"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16541064"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04586"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028635122"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04586", 
          "https://app.dimensions.ai/details/publication/pub.1028635122"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71710_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04586"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04586'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      62 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04586 schema:about N14b757d46ea94e3bbbedde890dd5e2e1
    2 N15958c99860447b3b5dfc00dad90f7a0
    3 N1f3dbb9d5fb444379e34a0a78872c9ac
    4 N2267926c6610447d80150c37e2851191
    5 N27e64ad9b6e84ffd83e3345ac9528f7a
    6 N3a4123ca6a1c45d2a06350d76f2b7858
    7 N4b624d1abd0d4420b7d5e06c33031df8
    8 N7ccd55bd2adf4f8787ecacb44d8e152f
    9 Na3929010929649ffa1abe96a9f3cc4ec
    10 Nd1120af412ee431e9f87f2172cc58afc
    11 anzsrc-for:03
    12 anzsrc-for:0303
    13 schema:author N464548b7f33f4574b441413bf9c33944
    14 schema:citation sg:pub.10.1007/3-540-45465-9_1
    15 sg:pub.10.1038/344524a0
    16 sg:pub.10.1038/350631a0
    17 sg:pub.10.1038/35098059
    18 sg:pub.10.1038/nature02307
    19 https://doi.org/10.1002/ange.200503797
    20 https://doi.org/10.1016/0022-5193(82)90002-9
    21 https://doi.org/10.1021/bi00064a003
    22 https://doi.org/10.1021/ja00084a006
    23 https://doi.org/10.1021/ja044319l
    24 https://doi.org/10.1021/nl048635+
    25 https://doi.org/10.1063/1.113809
    26 https://doi.org/10.1073/pnas.1032954100
    27 https://doi.org/10.1080/07391102.1990.10507829
    28 https://doi.org/10.1088/0034-4885/68/1/r05
    29 https://doi.org/10.1090/dimacs/027
    30 https://doi.org/10.1126/science.1076768
    31 https://doi.org/10.1126/science.1089389
    32 https://doi.org/10.1126/science.1092740
    33 https://doi.org/10.1126/science.1104686
    34 https://doi.org/10.1126/science.1962191
    35 https://doi.org/10.1201/9781420007848.sec1
    36 https://doi.org/10.1371/journal.pbio.0020424
    37 schema:datePublished 2006-03
    38 schema:datePublishedReg 2006-03-01
    39 schema:description 'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N8edf23b23c484ffabd4e23ee8d4b96fc
    44 Ne0154fe4f5b941229444b94cbca94b9d
    45 sg:journal.1018957
    46 schema:name Folding DNA to create nanoscale shapes and patterns
    47 schema:pagination 297
    48 schema:productId N76322da37b534447b0ca40d36db3c7b1
    49 Na1e1d2234e284e87881d56e72f8517a7
    50 Nd1bc24cec6734e4f8d5e9e1d8184a5ab
    51 Nda9139ed4fde44978c78e69bc090f5f3
    52 Nf17c9b4b779544e6804a9a4f8fa11ce1
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
    54 https://doi.org/10.1038/nature04586
    55 schema:sdDatePublished 2019-04-11T13:01
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N3830e39d4eca48e690d59bc04fbd0d18
    58 schema:url https://www.nature.com/articles/nature04586
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N14b757d46ea94e3bbbedde890dd5e2e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    63 schema:name Nanotechnology
    64 rdf:type schema:DefinedTerm
    65 N15958c99860447b3b5dfc00dad90f7a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Art
    67 rdf:type schema:DefinedTerm
    68 N1f3dbb9d5fb444379e34a0a78872c9ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Nucleic Acid Conformation
    70 rdf:type schema:DefinedTerm
    71 N2267926c6610447d80150c37e2851191 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Bacteriophage M13
    73 rdf:type schema:DefinedTerm
    74 N27e64ad9b6e84ffd83e3345ac9528f7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name DNA, Viral
    76 rdf:type schema:DefinedTerm
    77 N3830e39d4eca48e690d59bc04fbd0d18 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N3a4123ca6a1c45d2a06350d76f2b7858 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name DNA, Single-Stranded
    81 rdf:type schema:DefinedTerm
    82 N464548b7f33f4574b441413bf9c33944 rdf:first sg:person.0655741071.47
    83 rdf:rest rdf:nil
    84 N4b624d1abd0d4420b7d5e06c33031df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name DNA
    86 rdf:type schema:DefinedTerm
    87 N76322da37b534447b0ca40d36db3c7b1 schema:name pubmed_id
    88 schema:value 16541064
    89 rdf:type schema:PropertyValue
    90 N7ccd55bd2adf4f8787ecacb44d8e152f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Microscopy, Atomic Force
    92 rdf:type schema:DefinedTerm
    93 N8edf23b23c484ffabd4e23ee8d4b96fc schema:volumeNumber 440
    94 rdf:type schema:PublicationVolume
    95 Na1e1d2234e284e87881d56e72f8517a7 schema:name nlm_unique_id
    96 schema:value 0410462
    97 rdf:type schema:PropertyValue
    98 Na3929010929649ffa1abe96a9f3cc4ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Biopolymers
    100 rdf:type schema:DefinedTerm
    101 Nd1120af412ee431e9f87f2172cc58afc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Nanostructures
    103 rdf:type schema:DefinedTerm
    104 Nd1bc24cec6734e4f8d5e9e1d8184a5ab schema:name doi
    105 schema:value 10.1038/nature04586
    106 rdf:type schema:PropertyValue
    107 Nda9139ed4fde44978c78e69bc090f5f3 schema:name readcube_id
    108 schema:value 8868ab4818d90f2191fd8eba5cc5ba4fd04e710f3f18ca259d285dca7b483c74
    109 rdf:type schema:PropertyValue
    110 Ne0154fe4f5b941229444b94cbca94b9d schema:issueNumber 7082
    111 rdf:type schema:PublicationIssue
    112 Nf17c9b4b779544e6804a9a4f8fa11ce1 schema:name dimensions_id
    113 schema:value pub.1028635122
    114 rdf:type schema:PropertyValue
    115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Chemical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Macromolecular and Materials Chemistry
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1018957 schema:issn 0090-0028
    122 1476-4687
    123 schema:name Nature
    124 rdf:type schema:Periodical
    125 sg:person.0655741071.47 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    126 schema:familyName Rothemund
    127 schema:givenName Paul W. K.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741071.47
    129 rdf:type schema:Person
    130 sg:pub.10.1007/3-540-45465-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883174
    131 https://doi.org/10.1007/3-540-45465-9_1
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/344524a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012999885
    134 https://doi.org/10.1038/344524a0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/350631a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034775610
    137 https://doi.org/10.1038/350631a0
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/35098059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003020553
    140 https://doi.org/10.1038/35098059
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nature02307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024204443
    143 https://doi.org/10.1038/nature02307
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/ange.200503797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822151
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/0022-5193(82)90002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002849846
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/bi00064a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159372
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/ja00084a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705408
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/ja044319l schema:sameAs https://app.dimensions.ai/details/publication/pub.1050478235
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/nl048635+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1028304561
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1063/1.113809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057665428
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1073/pnas.1032954100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022757322
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1080/07391102.1990.10507829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042887966
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1088/0034-4885/68/1/r05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052554623
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1090/dimacs/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097022560
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1126/science.1076768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815962
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1126/science.1089389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047702592
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.1092740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449217
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1126/science.1104686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451157
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.1962191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062515366
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1201/9781420007848.sec1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014856226
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1371/journal.pbio.0020424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004978828
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
    182 schema:name Departments of Computer Science and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...