Folding DNA to create nanoscale shapes and patterns View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

Paul W. K. Rothemund

ABSTRACT

'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex). More... »

PAGES

297

Journal

TITLE

Nature

ISSUE

7082

VOLUME

440

Related Patents

  • Nucleic Acid Enzyme Biosensors For Ions
  • Materials Based On Filamentous Peptide - Or Protein-Based Structures
  • Single Molecule Loading Methods And Compositions
  • Engineering Dna Assembly In Vivo And Methods Of Making And Using The Reverse Transcriptase Technology
  • High-Throughput And Highly Multiplexed Imaging With Programmable Nucleic Acid Probes
  • Standard Dna-Origami-Based
  • Internal Structured Self Assembling Liposomes
  • Single Molecule Loading Methods And Compositions
  • Standard Dna - Origami - Base
  • Engineered Lectin Oligomers With Antiviral Activity
  • Biomolecular Self-Assembly
  • Nucleic Acid Construct And Method Of Preparing Nanoparticle Using The Same
  • Pkr Activation Via Hybridization Chain Reaction
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Nucleic Acid Nanostructures
  • Polypeptides For Use In Self-Assembling Protein Nanostructures
  • Method Of Combing A Nucleic Acid
  • Synthetic Glycosyl Hydrolase Based On Dna Nanoweaves
  • Wireframe Nanostructures
  • Lateral Flow Devices
  • Fluorescence Based Biosensor
  • Method Of Combing An Elongated Molecule
  • Methods Of Making Nucleic Acid Nanostructures
  • Novel Compounds And Derivatization Of Dnas And Rnas On The Nucleobases Of Pyrimidines For Function, Structure, And Therapeutics
  • Rna Nanoparticles And Methods Of Use
  • Nucleic Acid Nanotube Liquid Crystals And Use For Nmr Structure Determination Of Membrane Proteins
  • Nanocrystals Containing Cdte Core With Cds And Zns Coatings
  • High-Q Resonators Assembly
  • Sensor Housing And Reagent Chemistry
  • Nanocomposite Structures And Related Methods And Systems
  • Methods Of Serial Assembly Of Dna Bricks Into Larger Structures
  • Quantum Dots, Rods, Wires, Sheets, And Ribbons, And Uses Thereof
  • Self-Assembly Of Dna Origami: A New Diganostic Tool
  • Slippery Liquid-Infused Porous Surfaces And Biological Applications Thereof
  • Slips Surface Based On Metal-Containing Compound
  • Slippery Self-Lubricating Polymer Surfaces
  • Compositions And Methods Relating To Complex Nucleic Acid Nanostructures
  • Nucleic Acid Nanotube Liquid Crystals And Use For Nmr Structure Determination Of Membrane Proteins
  • Slippery Liquid-Infused Porous Surfaces Having Improved Stability
  • Triggered Molecular Geometry Based Bioimaging Probes
  • Nucleic Acid Construct And Method Of Preparing Nanoparticle Using The Same
  • Streptavidin Macromolecular Adaptor And Complexes Thereof
  • Nucleic Acid-Based Linkers For Detecting And Measuring Interactions
  • Zero-Mode Waveguides With Non-Reflecting Walls
  • Aptamer-Based Colorimetric Sensor Systems
  • Nucleic Acid Based Fluorescent Sensor For Copper Detection
  • Small Conditional Rnas
  • Scalable Biotechnological Production Of Dna Single Strand Molecules Of Defined Sequence And Length
  • Multidimensional Supramolecular Structures Essentially Made Of Assembled I-Motif Tetramers
  • Nucleic Acid Nanostructure Barcode Probes
  • Multifunctional Nucleic Acid Nano-Structures
  • Novel Compounds And Synthesis Of Tellurium-Derivatized Oligonucleotides For Structural And Functional Studies
  • Fluorescent Sensor For Mercury
  • Method And Apparatus For Controlling Properties Of Nucleic Acid Nanostructures
  • Nucleic Acid Based Fluorescent Sensor For Mercury Detection
  • Self-Assembling Polypeptide Polyhedra
  • Nanopore Functionality Control
  • Wireframe Nanostructures
  • Self-Assembly Of Dna Origami: A New Diagnostic Tool
  • Versatile Nucleic Acid Hairpin Motif For Programming Biomolecular Self-Assembly Pathways
  • Signal Activatable Constructs And Related Components Compositions Methods And Systems
  • Nucleic Acid Nanostructure Barcode Probes
  • Nanoscale Apertures Having Islands Of Functionality
  • Method And Materials For The Cooperative Hybridization Of Oligonucleotides
  • Non-Immunogenic And Nuclease Resistant Nucleic Acid Origami Devices And Compositions Thereof
  • Method Of Protein Nanostructure Fabrication
  • Fluorescence Based Biosensor
  • Multifunctional Nucleic Acid Nano-Structures
  • Nucleic Acid Nanostructure Barcode Probes
  • Compositions And Methods For Polynucleotide Sequencing
  • Membrane-Spanning Nanopores
  • Nucleic Acid Nanotube Liquid Crystals
  • Nucleic Acid Enzyme Biosensors For Ions
  • Dna-Linked Nanoparticle Building Blocks For Nanostructure Assembly And Methods Of Producing The Same
  • High-Q Resonators Assembly
  • Self-Assembled Polynucleotide Structure
  • Spatial Sequestration Of Dynamic Nucleic Acid Circuits
  • Compositions And Methods For Self-Assembly Of Polymers With Complementary Macroscopic And Microscopic Scale Units
  • Method For Preparing Zero-Mode Waveguide Arrays With Coated Walls
  • Multifunctional Nucleic Acid Nano-Structures
  • Method Of Combing A Nucleic Acid
  • Aptamer Based Colorimetric Sensor Systems
  • Aptamer- And Nucleic Acid Enzyme-Based Systems For Simultaneous Detection Of Multiple Analytes
  • Multidimensional Supramolecular Structures Essentially Made Of Assembled I-Motif Tetramers
  • Molecular Identification With Sub-Nanometer Localization Accuracy
  • Compositions Of Toehold Primer Duplexes And Methods Of Use
  • Slippery Surfaces With High Pressure Stability, Optical Transparency, And Self-Healing Characteristics
  • Method Of Combing A Nucleic Acid
  • Hybridization Chain Reaction Amplification For In Situ Imaging
  • Methods For Producing Zmws With Islands Of Functionality
  • Method For Forming Nanoparticles Having Predetermined Shapes
  • Exonuclease Resistant Polynucleotide And Related Duplex Polynucleotides, Constructs, Compositions, Methods And Systems
  • General Method For Designing Self-Assembling Protein Nanomaterials
  • Lipid-Coated Nucleic Acid Nanostructures Of Defined Shape
  • Method Of Combing An Elongated Molecule
  • Polynucleotides And Related Nanoassemblies, Structures, Arrangements, Methods And Systems
  • Triggered Rnai
  • Method Of Applying An Elongated Molecule To A Surface
  • Selective Nucleic Acid Amplification From Nucleic Acid Pools
  • Amphiphilic Substances And Functionalized Lipid Vesicles Including The Same
  • Targeting Domain And Related Signal Activated Molecular Delivery
  • Compositions And Methods Relating To Nucleic Acid Nano- And Micro-Technology
  • Materials And Methods For Stabilizing Nanoparticles In Salt Solutions
  • Node Polypeptides For Nanostructure Assembly
  • Nucleic Acid Based Nanopores Or Transmembrane Channels And Their Uses
  • Triorthogonal Reagents For Dual Protein Conjugation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04586

    DOI

    http://dx.doi.org/10.1038/nature04586

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028635122

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16541064


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Art", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteriophage M13", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biopolymers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Viral", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Departments of Computer Science and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rothemund", 
            "givenName": "Paul W. K.", 
            "id": "sg:person.0655741071.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741071.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-5193(82)90002-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002849846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020553", 
              "https://doi.org/10.1038/35098059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003020553", 
              "https://doi.org/10.1038/35098059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0020424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004978828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/344524a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012999885", 
              "https://doi.org/10.1038/344524a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420007848.sec1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014856226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1076768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015815962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1032954100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022757322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024204443", 
              "https://doi.org/10.1038/nature02307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048635+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048635+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350631a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034775610", 
              "https://doi.org/10.1038/350631a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45465-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039883174", 
              "https://doi.org/10.1007/3-540-45465-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1990.10507829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042887966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1089389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047702592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja044319l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050478235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/68/1/r05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052554623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ange.200503797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052822151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ange.200503797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052822151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00064a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055159372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00084a006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055705408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.113809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057665428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1092740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1104686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1962191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062515366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/dimacs/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097022560"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-03", 
        "datePublishedReg": "2006-03-01", 
        "description": "'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature04586", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7082", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "440"
          }
        ], 
        "name": "Folding DNA to create nanoscale shapes and patterns", 
        "pagination": "297", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8868ab4818d90f2191fd8eba5cc5ba4fd04e710f3f18ca259d285dca7b483c74"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16541064"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04586"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028635122"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04586", 
          "https://app.dimensions.ai/details/publication/pub.1028635122"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71710_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04586"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04586'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04586'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      62 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04586 schema:about N0fd4f479fb00480b9013ee4697feed04
    2 N4b0da2b0087e4c1aa53aaafb50fb1830
    3 N58515db308ef4ff8a698f6b2f5586fe4
    4 N68357955c58f4696b95e0c385dcd8877
    5 N7e0b11a40983451588b752e395ee4f3d
    6 N9e88722ad164477395848b89c2529ace
    7 Nbbcf7bfd9305402da4cd348b29b967d1
    8 Nc21f45e37cf244bfb0261ff170380509
    9 Ndb78c9f2942e412392456b52c69f66cd
    10 Ndee23def8d11459eaebc755829dbbbbb
    11 anzsrc-for:03
    12 anzsrc-for:0303
    13 schema:author Nf77ae903b7414fb28e61772671dfc5a2
    14 schema:citation sg:pub.10.1007/3-540-45465-9_1
    15 sg:pub.10.1038/344524a0
    16 sg:pub.10.1038/350631a0
    17 sg:pub.10.1038/35098059
    18 sg:pub.10.1038/nature02307
    19 https://doi.org/10.1002/ange.200503797
    20 https://doi.org/10.1016/0022-5193(82)90002-9
    21 https://doi.org/10.1021/bi00064a003
    22 https://doi.org/10.1021/ja00084a006
    23 https://doi.org/10.1021/ja044319l
    24 https://doi.org/10.1021/nl048635+
    25 https://doi.org/10.1063/1.113809
    26 https://doi.org/10.1073/pnas.1032954100
    27 https://doi.org/10.1080/07391102.1990.10507829
    28 https://doi.org/10.1088/0034-4885/68/1/r05
    29 https://doi.org/10.1090/dimacs/027
    30 https://doi.org/10.1126/science.1076768
    31 https://doi.org/10.1126/science.1089389
    32 https://doi.org/10.1126/science.1092740
    33 https://doi.org/10.1126/science.1104686
    34 https://doi.org/10.1126/science.1962191
    35 https://doi.org/10.1201/9781420007848.sec1
    36 https://doi.org/10.1371/journal.pbio.0020424
    37 schema:datePublished 2006-03
    38 schema:datePublishedReg 2006-03-01
    39 schema:description 'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N2a87515d2023443ca9d628a675e4f919
    44 Nb9dd868dd2304050ba80b82dd0bfc258
    45 sg:journal.1018957
    46 schema:name Folding DNA to create nanoscale shapes and patterns
    47 schema:pagination 297
    48 schema:productId N04bdec73b9154f79aa24ffe94fa4098c
    49 N0aafd6a0fcd44ec98d5a695be88bb1ec
    50 N4521e5cbafe64713ae925a6a226d9282
    51 N5b394ed7e06c41f198fbf6fd7f5bd911
    52 N919dbca23f644756bbb510579650f024
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
    54 https://doi.org/10.1038/nature04586
    55 schema:sdDatePublished 2019-04-11T13:01
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N4c36de700b484d799918fac0802d69d1
    58 schema:url https://www.nature.com/articles/nature04586
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N04bdec73b9154f79aa24ffe94fa4098c schema:name dimensions_id
    63 schema:value pub.1028635122
    64 rdf:type schema:PropertyValue
    65 N0aafd6a0fcd44ec98d5a695be88bb1ec schema:name nlm_unique_id
    66 schema:value 0410462
    67 rdf:type schema:PropertyValue
    68 N0fd4f479fb00480b9013ee4697feed04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Biopolymers
    70 rdf:type schema:DefinedTerm
    71 N2a87515d2023443ca9d628a675e4f919 schema:volumeNumber 440
    72 rdf:type schema:PublicationVolume
    73 N4521e5cbafe64713ae925a6a226d9282 schema:name pubmed_id
    74 schema:value 16541064
    75 rdf:type schema:PropertyValue
    76 N4b0da2b0087e4c1aa53aaafb50fb1830 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Bacteriophage M13
    78 rdf:type schema:DefinedTerm
    79 N4c36de700b484d799918fac0802d69d1 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N58515db308ef4ff8a698f6b2f5586fe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Nanostructures
    83 rdf:type schema:DefinedTerm
    84 N5b394ed7e06c41f198fbf6fd7f5bd911 schema:name readcube_id
    85 schema:value 8868ab4818d90f2191fd8eba5cc5ba4fd04e710f3f18ca259d285dca7b483c74
    86 rdf:type schema:PropertyValue
    87 N68357955c58f4696b95e0c385dcd8877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name DNA, Single-Stranded
    89 rdf:type schema:DefinedTerm
    90 N7e0b11a40983451588b752e395ee4f3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA, Viral
    92 rdf:type schema:DefinedTerm
    93 N919dbca23f644756bbb510579650f024 schema:name doi
    94 schema:value 10.1038/nature04586
    95 rdf:type schema:PropertyValue
    96 N9e88722ad164477395848b89c2529ace schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name DNA
    98 rdf:type schema:DefinedTerm
    99 Nb9dd868dd2304050ba80b82dd0bfc258 schema:issueNumber 7082
    100 rdf:type schema:PublicationIssue
    101 Nbbcf7bfd9305402da4cd348b29b967d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Nanotechnology
    103 rdf:type schema:DefinedTerm
    104 Nc21f45e37cf244bfb0261ff170380509 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Art
    106 rdf:type schema:DefinedTerm
    107 Ndb78c9f2942e412392456b52c69f66cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Microscopy, Atomic Force
    109 rdf:type schema:DefinedTerm
    110 Ndee23def8d11459eaebc755829dbbbbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Nucleic Acid Conformation
    112 rdf:type schema:DefinedTerm
    113 Nf77ae903b7414fb28e61772671dfc5a2 rdf:first sg:person.0655741071.47
    114 rdf:rest rdf:nil
    115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Chemical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Macromolecular and Materials Chemistry
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1018957 schema:issn 0090-0028
    122 1476-4687
    123 schema:name Nature
    124 rdf:type schema:Periodical
    125 sg:person.0655741071.47 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    126 schema:familyName Rothemund
    127 schema:givenName Paul W. K.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655741071.47
    129 rdf:type schema:Person
    130 sg:pub.10.1007/3-540-45465-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883174
    131 https://doi.org/10.1007/3-540-45465-9_1
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/344524a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012999885
    134 https://doi.org/10.1038/344524a0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/350631a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034775610
    137 https://doi.org/10.1038/350631a0
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/35098059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003020553
    140 https://doi.org/10.1038/35098059
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nature02307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024204443
    143 https://doi.org/10.1038/nature02307
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/ange.200503797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822151
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/0022-5193(82)90002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002849846
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/bi00064a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159372
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/ja00084a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705408
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/ja044319l schema:sameAs https://app.dimensions.ai/details/publication/pub.1050478235
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/nl048635+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1028304561
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1063/1.113809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057665428
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1073/pnas.1032954100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022757322
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1080/07391102.1990.10507829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042887966
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1088/0034-4885/68/1/r05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052554623
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1090/dimacs/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097022560
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1126/science.1076768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815962
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1126/science.1089389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047702592
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.1092740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449217
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1126/science.1104686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451157
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.1962191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062515366
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1201/9781420007848.sec1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014856226
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1371/journal.pbio.0020424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004978828
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
    182 schema:name Departments of Computer Science and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...