Quantum supercurrent transistors in carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-02

AUTHORS

Pablo Jarillo-Herrero, Jorden A. van Dam, Leo P. Kouwenhoven

ABSTRACT

Electronic transport through nanostructures is greatly affected by the presence of superconducting leads. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states-that is, the quantized single particle energy states of a quantum dot, or 'artificial atom', placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes. More... »

PAGES

953

References to SciGraph publications

  • 2001-06. Fabry - Perot interference in a nanotube electron waveguide in NATURE
  • 1992. Resonant Josephson Current Through a Quantum Dot in SINGLE-ELECTRON TUNNELING AND MESOSCOPIC DEVICES
  • 2005-03. Orbital Kondo effect in carbon nanotubes in NATURE
  • Journal

    TITLE

    Nature

    ISSUE

    7079

    VOLUME

    439

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature04550

    DOI

    http://dx.doi.org/10.1038/nature04550

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050909017

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16495994


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jarillo-Herrero", 
            "givenName": "Pablo", 
            "id": "sg:person.01034030721.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Dam", 
            "givenName": "Jorden A.", 
            "id": "sg:person.01153635600.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153635600.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kouwenhoven", 
            "givenName": "Leo P.", 
            "id": "sg:person.01360160001.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360160001.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35079517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012457445", 
              "https://doi.org/10.1038/35079517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012457445", 
              "https://doi.org/10.1038/35079517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015082359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.153402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015082359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015445586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015445586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.195408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021343251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.195408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021343251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.020502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027079864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.020502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027079864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035987462", 
              "https://doi.org/10.1038/nature03422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035987462", 
              "https://doi.org/10.1038/nature03422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.057005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039188420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.057005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039188420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(00)00099-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043138933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-77274-0_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048217457", 
              "https://doi.org/10.1007/978-3-642-77274-0_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.156801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049694397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.156801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049694397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050017917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-9163(62)91369-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050017917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.184507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050218414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.184507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050218414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1755416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057815572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2058-7058/13/6/26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059185546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2058-7058/14/1/28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059185690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.4515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.25.4515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060530522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.2449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.2458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.2458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060808823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.3241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060810838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.3241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060810838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060824645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060824645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.36.225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.36.225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.51.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.51.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1113523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.284.5419.1508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062565394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5438.263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566877"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02", 
        "datePublishedReg": "2006-02-01", 
        "description": "Electronic transport through nanostructures is greatly affected by the presence of superconducting leads. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states-that is, the quantized single particle energy states of a quantum dot, or 'artificial atom', placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature04550", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7079", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "439"
          }
        ], 
        "name": "Quantum supercurrent transistors in carbon nanotubes", 
        "pagination": "953", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f28326fd7f92e40931bf8b72ccddcee8c0c7688b5d3fd7c556049dca4354b7ac"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16495994"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature04550"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050909017"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature04550", 
          "https://app.dimensions.ai/details/publication/pub.1050909017"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71707_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature04550"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature04550'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature04550'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature04550'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature04550'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature04550 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 schema:author N634d4e3935914121b69d3204db68d47c
    4 schema:citation sg:pub.10.1007/978-3-642-77274-0_20
    5 sg:pub.10.1038/35079517
    6 sg:pub.10.1038/nature03422
    7 https://doi.org/10.1016/0031-9163(62)91369-0
    8 https://doi.org/10.1016/s0370-1573(00)00099-5
    9 https://doi.org/10.1063/1.1755416
    10 https://doi.org/10.1088/2058-7058/13/6/26
    11 https://doi.org/10.1088/2058-7058/14/1/28
    12 https://doi.org/10.1103/physrevb.25.4515
    13 https://doi.org/10.1103/physrevb.65.184507
    14 https://doi.org/10.1103/physrevb.70.020502
    15 https://doi.org/10.1103/physrevb.70.195408
    16 https://doi.org/10.1103/physrevb.71.153402
    17 https://doi.org/10.1103/physrevlett.54.2449
    18 https://doi.org/10.1103/physrevlett.72.2458
    19 https://doi.org/10.1103/physrevlett.74.3241
    20 https://doi.org/10.1103/physrevlett.88.126801
    21 https://doi.org/10.1103/physrevlett.88.156801
    22 https://doi.org/10.1103/physrevlett.89.256801
    23 https://doi.org/10.1103/physrevlett.91.057005
    24 https://doi.org/10.1103/revmodphys.36.225
    25 https://doi.org/10.1103/revmodphys.51.101
    26 https://doi.org/10.1126/science.1113523
    27 https://doi.org/10.1126/science.284.5419.1508
    28 https://doi.org/10.1126/science.286.5438.263
    29 schema:datePublished 2006-02
    30 schema:datePublishedReg 2006-02-01
    31 schema:description Electronic transport through nanostructures is greatly affected by the presence of superconducting leads. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states-that is, the quantized single particle energy states of a quantum dot, or 'artificial atom', placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory, that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N3bbb841596724f1d8c28f71c481240ed
    36 Nc3fd0395e4564c01a8f6694a7408c6d9
    37 sg:journal.1018957
    38 schema:name Quantum supercurrent transistors in carbon nanotubes
    39 schema:pagination 953
    40 schema:productId N1cda72ddd6c044c9921a51f33186f48d
    41 N50e3fbaacb894408a4c39f064824b964
    42 N584d97d6c3a24c4987d2bed0e7ec807d
    43 N64424d82b23d4222809396cecc5a4ad0
    44 Ndc58a29f6d69454d9127b912078780f6
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050909017
    46 https://doi.org/10.1038/nature04550
    47 schema:sdDatePublished 2019-04-11T13:00
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N1ab1bbaa0964439689119edef2a327a2
    50 schema:url https://www.nature.com/articles/nature04550
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N1ab1bbaa0964439689119edef2a327a2 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N1cda72ddd6c044c9921a51f33186f48d schema:name readcube_id
    57 schema:value f28326fd7f92e40931bf8b72ccddcee8c0c7688b5d3fd7c556049dca4354b7ac
    58 rdf:type schema:PropertyValue
    59 N3bbb841596724f1d8c28f71c481240ed schema:volumeNumber 439
    60 rdf:type schema:PublicationVolume
    61 N50e3fbaacb894408a4c39f064824b964 schema:name nlm_unique_id
    62 schema:value 0410462
    63 rdf:type schema:PropertyValue
    64 N584d97d6c3a24c4987d2bed0e7ec807d schema:name dimensions_id
    65 schema:value pub.1050909017
    66 rdf:type schema:PropertyValue
    67 N634d4e3935914121b69d3204db68d47c rdf:first sg:person.01034030721.03
    68 rdf:rest N8ebe9312e724442a84845ae6f1812871
    69 N64424d82b23d4222809396cecc5a4ad0 schema:name pubmed_id
    70 schema:value 16495994
    71 rdf:type schema:PropertyValue
    72 N8ebe9312e724442a84845ae6f1812871 rdf:first sg:person.01153635600.27
    73 rdf:rest Nbef8b166ea10425585a450f119628cd2
    74 Nbef8b166ea10425585a450f119628cd2 rdf:first sg:person.01360160001.85
    75 rdf:rest rdf:nil
    76 Nc3fd0395e4564c01a8f6694a7408c6d9 schema:issueNumber 7079
    77 rdf:type schema:PublicationIssue
    78 Ndc58a29f6d69454d9127b912078780f6 schema:name doi
    79 schema:value 10.1038/nature04550
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Condensed Matter Physics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1018957 schema:issn 0090-0028
    88 1476-4687
    89 schema:name Nature
    90 rdf:type schema:Periodical
    91 sg:person.01034030721.03 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    92 schema:familyName Jarillo-Herrero
    93 schema:givenName Pablo
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03
    95 rdf:type schema:Person
    96 sg:person.01153635600.27 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    97 schema:familyName van Dam
    98 schema:givenName Jorden A.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153635600.27
    100 rdf:type schema:Person
    101 sg:person.01360160001.85 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    102 schema:familyName Kouwenhoven
    103 schema:givenName Leo P.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360160001.85
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-3-642-77274-0_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048217457
    107 https://doi.org/10.1007/978-3-642-77274-0_20
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
    110 https://doi.org/10.1038/35079517
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nature03422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987462
    113 https://doi.org/10.1038/nature03422
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0031-9163(62)91369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050017917
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0370-1573(00)00099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043138933
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1063/1.1755416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815572
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1088/2058-7058/13/6/26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059185546
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1088/2058-7058/14/1/28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059185690
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevb.25.4515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530522
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevb.65.184507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050218414
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevb.70.020502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079864
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevb.70.195408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021343251
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevb.71.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015082359
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevlett.54.2449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791569
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevlett.74.3241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810838
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.88.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824645
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevlett.88.156801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049694397
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevlett.89.256801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015445586
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.91.057005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039188420
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/revmodphys.36.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838279
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/revmodphys.51.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838913
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1126/science.1113523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452290
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1126/science.284.5419.1508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062565394
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1126/science.286.5438.263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566877
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
    160 schema:name Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...